FINAL REPORT

Q27/2006 Sediment and Antifoul Monitoring Program

Stage 2 - Antifoul Study

Prepared for

Hornsby Shire Council

Hornsby Shire Council Administration Centre 296 Pacific Highway Hornsby, NSW 2077

20 September 2007

43217595

Q27/2006 SEDIMENT AND ANTIFOUL MONITORING PROGRAM STAGE 2 - ANTIFOUL STUDY

Project Manager:			
	Dr Carsten Matthai Senior Environmental Scientist	URS Australia F	Pty Ltd
Project Director:	Dr Stuart Taylor Principal Environmental Scientist	Level 3, 116 Mil North Sydney NSW 2060 Australia Tel: 61 2 8925 5 Fax: 61 2 8925 5	5500
Author:	Dr Carsten Matthai Senior Environmental Scientist	Date: Reference: Status:	20 September 2007 Antifoul Study Final Report R001 Final Report

Contents

1	Intro	roduction					
	1.1	Background					
	1.2	Study Area					
	1.3						
		1.3.1	Additional Sampling and Analysis1-2				
	1.4	Previous Contaminant Investigations of Sediment and Biota in the Hawkesbury River					
	1.5	Tributylti	in and Antifouling Paint Booster Biocides1-3				
	1.6	Antifoul	Study - Objectives				
2	Meth	thodology					
	2.1	Sedimen	t Sampling2-1				
		2.1.1	Sediment Subsampling2-1				
		2.1.2	General Field Activities Documentation				
	2.2	Sample H	Handling, Processing and Analysis				
		2.2.1	Chain of Custody Protocols				
		2.2.2	Laboratory Receipt of Samples2-3				
		2.2.3	Pre-and Post-analysis Storage2-3				
		2.2.4	Sediment Analyses 2-3				
		2.2.5	Analytical Quality Assurance/Quality Control (QA/QC)2-4				
		2.2.6	Data Handling2-5				
		2.2.7	Data Validation				
	2.3	Geograp	hic Information System2-8				
	2.4	Independ	dent Peer Review				
3	Resu	lts					
	3.1	.1 Sediment Chemistry (Antifoul Study)					
		3.1.1	TributyItin				
		3.1.2	Organic Compounds				
		3.1.3	Organic Booster Biocides				
	3.2 STP Site Sediment Chemistry						
		3.2.1	Sediment Texture and Grain Size 3-3				
		3.2.2	Inorganic Analytes and Nutrients				
		3.2.3	Organic Contaminants				

1

Contents

	3.3	Silver Concentrations in Sediments in Berowra Creek				
4	Discussion 4-1					
	4.1	Sediment Quality				
	4.2	Potenti	al Sources of TBT to Sediments	4-1		
	4.3	Temporal Variations of TBT in Hawkesbury River Sediments				
		4.3.1	1990-1991 Baseline Contaminant Survey (EPA, 1996)	4-3		
		4.3.2	2007 Antifoul Study	4-4		
		4.3.3	Summary of Temporal Changes in TBT Concentrations	4-4		
		4.3.4	Other Previous TBT Studies	4-6		
		4.3.5	TBT in Hawkesbury River Sediments Compared to Sediments Worldwide	4-6		
	4.4	Organio	c Paint Booster Biocides	4-7		
		4.4.1	Irgarol 1051	4-7		
		4.4.2	Diuron	4-8		
		4.4.3	Chlorothalonil	4-8		
		4.4.4	Dichlofluanid	4-9		
		4.4.5	Organic Booster Biocides in Sediments in the Hawkesbury River System	4-9		
	4.5	Contam	ninants in Sediments at Proposed STP Site	4-11		
	4.6	Silver C	Concentrations in Sediments in Berowra Creek	4-11		
5	Cond	clusions	S	5-1		
6	Reco	ommendations 6-1				
	6.1	Recom	mendations	6-1		
7	Refe	ferences				
8	Limitations					

Tables, Figures, Plates, Drawings Appendices

Tables

Table 1. Antifoul Study (Stage 2) Sampling Locations

Table 2. Antifoul Study (Stage 2) Field Descriptions

Table 3. Concentrations of PAHs (in µg/kg) in Whole Sediments

Table 4. Normalized (to 1% Total Organic Carbon) Concentrations of PAHs (in μ g/kg) and TBT (in ngSn/g) in Whole Sediment and Sediment Quality Guideline Values (ANZECC/ARMCANZ (2000)

Table 5. Concentrations of Tributyltin (TBT) in Sediments Worldwide

Table 6. General Information on Organic Booster Biocides

Table 7. Concentrations of Tributyltin (TBT) and Diuron in Sediments at Sampling Locations H9, H31, H37, and H38

Figures

Figure 1. Study Area and Sampling Locations

Figure 2. Concentrations of TBT in Sediments

Figure 3. Concentrations of TBT in 16 Sediment Samples from Marinas and Other Sampling Locations

Figure 4. Concentrations of Tributyltin (TBT) and Diuron in Sediments at Sampling Locations H9, H31, H37, and H38

Appendices

- Appendix A Sediment Study (Stage 1) Final Report
- Appendix B Sediment Study (Stage 1) Sampling and Analysis Plan
- Appendix C Antifoul Study (Stage 2) Sampling and Analysis Plan
- Appendix D Photographs
- Appendix E Analytical Data
- Appendix F Data Validation
- Appendix G Laboratory Organic Ultratrace Analysis

Appendix H – Peer Review Report (Dr Stuart Simpson, CSIRO)

Prepared for Hornsby Shire Council, 20 September 2007

J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Introduction

1.1 Background

URS Australia Pty Ltd (URS) was commissioned by Hornsby Shire Council to assess the contaminant status of the estuaries within Hornsby Shire, identify which contaminants are present and establish baseline data on levels of contamination to allow an assessment of the risks posed by contamination to human use and amenity, and ecological values of the Lower Hawkesbury River. The work was undertaken by URS in accordance with a proposal dated 29 August 2006. This report details findings of the Antifoul Stage 2 investigation. The findings of the Stage 1 Sediment Study have been previously submitted to Hornsby Shire Council and presented at the Estuary Management Committee Meeting on 8 February 2007. The amended Final Report for the Stage 1 Sediment Investigation is presented in Appendix A. The Sampling and Analysis Plan (SAP) for the Stage 1 Sediment Study was agreed upon by Hornsby Shire Council and is shown in Appendix B. A final report synthesis will be provided in September 2007.

1.2 Study Area

The study area is identified as the primary waterways of the Lower Hawkesbury River which include the Hawkesbury River, from the upstream limit of Wisemans Ferry to the downstream limit of Parsley Bay/Croppy Point, Marramarra Creek, Berowra Creek and Cowan Creek. Mooney Mooney and Mullet Creeks on the northern side of the river were also sampled during the Sediment Study (Stage 1). The overall study area incorporates the two study areas defined in the Berowra Creek and Brooklyn Estuary Process Studies with adjustments and includes the connecting water body from the mouth of Berowra Creek to the Freeway Bridge (Figure 1).

1.3 Scope of Work - Antifoul Study (Stage 2)

Based on the outcomes of the Sediment Study (Stage 1), 16 priority locations were identified and agreed upon for the Antifoul Study (Stage 2)(see Sampling and Analysis Plan for Antifoul Study (Stage 2) - Appendix C) (Table 1 and Figure 1). The 16 sampling locations are a subset of the 52 sampling locations visited during the Sediment Study (Stage 1) and were considered to adequately represent the areas of potential sediment contamination, in particular with respect to tributyltin (TBT), other organic contaminants and paint booster biocides (i.e. diuron, chlorothalonil, Irgarol 1051 and dichlofluanid). Paint booster biocides were considered at only four locations due to limitations of resources for the specialized analytical requirements pertaining to these compounds (Locations H37 (Brooklyn), H9 (Berowra Creek Marina), H38 (Sandbrook Inlet) and H31 (Refuge Bay)).

Surficial sediment samples were collected up to a depth of 10 cm, using an Ekman[™] grab sampler, at each sampling location. At two sampling locations, two QA/QC field replicate samples were obtained by splitting the sample. The homogenized sediment samples were analysed for the following:

- TBT; and
- Organic contaminants at Ultra Trace levels of analytical detection (polychlorinated biphenyls, polycyclic aromatic hydrocarbons, organochlorine pesticides, organophosphorus pesticides, total petroleum hydrocarbons (C6-C36) and BTEX).

The date and time of sampling, water depth, latitude and longitude (GPS) and a field description of the sediment type were recorded in the field and a photograph of the sample was taken.

Prepared for Hornsby Shire Council, 20 September 2007

J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Section 1 Introduction

The regional sediment geochemical data was displayed spatially on a GIS system (Mapinfo[™]) and the data screened against ANZECC/ARMCANZ (2000) sediment quality guideline values.

1.3.1 Additional Sampling and Analysis

Proposed Hawkesbury River STP Site

Three additional sampling locations adjacent to the proposed Sewage Treatment Plant (STP) outfall beneath the Peats Ferry Bridge were also included in the Antifoul Study (Stage 2) investigation (i.e. locations H40, H41 and H42 – Figure 1). At these three locations the coarse and gravelly sediment texture, high current velocities, and water depths >20 m made sampling using the Ekman[™] grab sampler difficult during the Sediment Study (Stage 1) investigation. Sediment samples from these three sampling locations (and one additional QA/QC field duplicate sample) were analysed for:

- TKN, TOC, NOX;
- Al, As, Ba, Be, Ca, Cd, Cr, Co, Cu, Fe, Mg, Mn, Ni, Pb, Sr, V, and Zn;
- Polychlorinated biphenyls (PCBs);
- Polycyclic aromatic hydrocarbons (PAHs);
- Organochlorine pesticides (OCs);
- Organophosphorus pesticides (OPs);
- Total petroleum hydrocarbons (TPHs) (C₆-C₃₆); and
- BTEX.

Organic compounds were analysed for standard limits of reporting and not Ultra Trace levels and grainsize in four fractions (63 μ m; 63 μ m; 250 μ m; 250 μ m; 22 mm; 22 mm) was determined for samples from locations H40, H41 and H42.

Silver in Surficial Sediments in Berowra Creek

Sediment samples from three locations (H3, H5 and H7) in Berowra Creek were collected and analysed for silver only to identify possible contributions of silver from potential sewage or stormwater contributions in Berowra Creek.

1.4 Previous Contaminant Investigations of Sediment and Biota in the Hawkesbury River

Organic and inorganic anthropogenic contaminants have been assessed in the Hawkesbury River for over 20 years. Early work included the determination of the speciation of iron, copper and zinc in waters of the Hawkesbury River by Pik et al. (1982) and the assessment of heavy metal enrichment in the surface water microlayer of the Hawkesbury-Nepean River system (Barnes et al., 1982). Markich and Brown (1998) conducted a survey of trace metal concentrations in the freshwater reaches of the Hawkesbury River, the first such survey of a permanent coastal river in Australia using 'clean' sampling and handling techniques. That study established that concentrations of nutrients, organic carbon and trace metals in the Hawkesbury River increased as a consequence of anthropogenic inputs, particularly point discharges from sewage treatment plants (STPs) as well as diffuse urban and agricultural runoff during storm events. Markich and Brown (1998) established that the temporal variability of trace metals is

Introduction

correlated to the variability in water discharge. An increase in concentrations of trace metals by a factor of up to 2 was correlated with increased water discharge and was cited as evidence of anthropogenic point and diffuse source contributions during high flow events.

Anthropogenic contaminants in surface waters of the Hawkesbury River are highly variable and transient in nature. In contrast, sediments, which represent a sink for contaminants in aquatic systems, may be used to establish a time-integrated signature of anthropogenic contributions in aquatic environments. Anthropogenic heavy metal contaminants in sediments in the Hawkesbury River have been extensively studied since the mid-1990s and a number of contaminant investigations of sediments in the Hawkesbury River estuary have been conducted by the Environmental Geology Group (EGG) at the University of Sydney and others (i.e. Parker, 1992; Shotter, 1994; Hardiman and Pearson, 1995; O'Donnell, 1995; Hayes and Buckney, 1998; Birch et al., 1998, 1999; Simonovski et al., 2003). A study of sediments in the Cowan Creek catchment was conducted by Miller (1993) who concluded that the presence of anomalously high concentrations of chromium, copper, lead, zinc, vanadium and arsenic in sediments near developed sites in the upper Cowan Creek catchment areas are the result of anthropogenic contributions to the aquatic system.

A baseline contaminant survey of the Hawkesbury River estuary in December 1990-January 1991 (EPA, 1996) established the concentrations of a range of organic and inorganic contaminants in sediments of the Hawkesbury River estuary, including the concentrations of tributyltin (TBT).

Concentrations of heavy metals and other contaminants in sediments of the Hawkesbury River are generally low and close to background, but are substantially elevated in the headwaters of Berowra Creek, Cowan Creek and in southeast Pittwater (Birch et al. 1998, Birch et al., 1999). In addition, high levels of contamination of sediments have been found adjacent to the West Hornsby Sewage Treatment Plant (STP) and the Hornsby Heights STP. Simonowski et al. (2003) reported that sediments in the upper Hawkesbury-Nepean River are not heavily polluted by heavy metals, although elevated concentrations of heavy metals were found in sediments near industrialized areas and STPs.

Other previous studies of sediments in the Hawkesbury River estuary include Bourgues et al. (1998) (nutrients), Mann et al. (1996) (nutrients and algal blooms), Coastal & Marine Geosciences (1998) (nutrients and heavy metals) and University of New South Wales (2002).

1.5 Tributyltin and Antifouling Paint Booster Biocides

The need for effective antifoulants, which prevent the settlement and growth of marine organisms on submerged structures, such as buoys, fish cages and ship's hulls, is recognised universally (Evans et al., 2000; Konstantinou and Albanis, 2004). For many years, tributyltin (TBT) compounds were the most widely used active ingredients in paint formulations. However, the use of TBT has been regulated internationally since 1990 (in New South Wales, Australia since 1989), due to its severe impact on the aquatic ecosystem (Fent, 1996) and the demonstrated effects of TBT on the disruption of the endocrine system by mimicking or inhibiting the action of gonadal steroid hormones, oestradiol and testosterone (Makita and Omura, 2006).

Prolonged release of TBT from ship-bottom coatings has resulted in the imposition of male sexual characteristics upon female gastropods, or imposex, a phenomenon which was first described by Blaber (1970) in the United Kingdom. Imposex in marine gastropods has subsequently been linked to the exposure of these benthic biota to TBT in aquatic systems worldwide (e.g. Smith, 1981a,b,c; Santos et al., 2004). This cause and effects relationship ultimately resulted in a global ban of TBT. The decline in the occurrence of imposex following worldwide bans has been used as a biomarker and biological indicator for environmental monitoring of TBT since the introductions of these bans in countries worldwide (Axiak et al., 2003).

Introduction

Restrictions on the use of TBT-based antifouling paints were implemented in New South Wales (NSW) in 1989, first on small vessels under 25 m length and then on larger vessels, which have been allowed the continuing use of TBT-based antifouling paints, as long as the maximum leaching rate is below $5 \ \mu g/cm^2/d$ (Moore, 1988). However, despite the partial ban on the use of TBT in Australia, a survey of imposex in *Thais orbita* (Neogastropoda) along the NSW coast found imposex was still widespread 10 years after the introduction of the ban, in particular within harbour/bay areas, where contamination "hotspots" are still present and where physical remobilization and dispersion processes may be less pronounced compared to high-energy coastal areas (Gibson and Wilson, 2003).

Copper-based antifouling paints, particularly those that continually erode (ablating antifoulings) have been widely used since the banning of tributyltin and represent a major source of copper (Taylor, 2000). Marinas are a possible source of trace metal contaminants to the estuaries as antifouling is applied and removed from vessels on slipways. The impact of recreational boating facilities was investigated by Taylor (2000) by sampling sediment near a number of marinas in Sydney Harbour. Trace metals in sediment collected more than 100 m away from boating facilities were not enriched above ambient concentrations. However, sediment collected within 50 m of boat slipways in Sailors and Long Bays contained enriched concentrations of copper (401 and 455 μ g/g, respectively) compared to average copper sediment concentrations in the embayment headwaters (284 and 247 μ g/g, respectively). However, the increase in copper concentrations near marinas was minimal compared to copper gradients away from stormwater drains (Taylor, 2000).

An additional aspect of the potential environmental impact of antifouling products for use in boating and marine infrastructure is the use of organic booster biocides in antifouling paints, which have replaced TBT-based coatings. This may represent an alternative that could represent toxic effects as a result of the synergistic interactions between various biocides used in these alternative products (Evans et al., 2000). The most commonly used biocides in antifouling paints following the introduction of the ban on TBT include Irgarol 1051 (not a registered compound in Australia – Amog Consulting, 2002), diuron, Sea-nine 211, dichlofluanid, chlorothalonil, zinc pyrithione, TCMS (2,3,3,6-tetrachloro-4-methylsulfonyl) pyridine, TCMTB [2-(thiocyanomethylthio) bezothiazole], and zineb. These compounds have shown to be present in increasing concentrations in waters and sediments in coastal environments in countries worldwide, including Australia (Konstantinou and Albanis, 2004).

There are currently limited data available on the potential ecotoxicological effects of the increasingly widespread use of organic booster biocides in the aquatic environment, although a recent review by Konstantinou and Albanis (2004) suggests that alternative antifouling products, which are based on copper metal oxides and organic biocides may require continued research regarding potential environmental effects in water and sediments and ecotoxicity in biota. The monitoring, behaviour and toxicity of degradation products of these compounds should be emphasized in establishing criteria for the occurrence, fate and effects of organic booster biocides in antifouling paints.

1.6 Antifoul Study - Objectives

The overall project Q27/2006 was divided into two stages, namely the Sediment Study (Stage 1) and the Antifoul Study (Stage 2) (see URS Proposal dated 29 August 2006). The objectives of the Antifoul Study (Stage 2) investigation are to:

- Determine whether or not the use of antifouling products in the Lower Hawkesbury River has resulted in contamination of the estuaries within Hornsby Shire;
- Identify which contaminants are present in the estuaries within Hornsby Shire as a result of the use of antifouling products;
- Look at a range of commercially available antifouling products and document current research;

Prepared for Hornsby Shire Council, 20 September 2007 J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Introduction

- Establish a set of baseline data, and compare to recognised standards, on the level of contamination resulting from the use of antifouling products in the sediments of the estuaries within Hornsby Shire; and
- Provide recommendations and remedial management actions based on results arising from the above objectives.

The Antifoul Study (Stage 2) provides Hornsby Shire Council with an understanding of the current status of contamination as a result of the use of antifoul products within the estuaries of Hornsby Shire. In addition, the recommendations from this study will be used by Council for incorporation into associated management strategies as required.

A further objective to establish baseline sediment quality data prior to the commencement of discharge from the Brooklyn and Dangar Island Sewerage Scheme outfall was excluded from the objectives of the Sediment Study (Stage 1) investigation at locations H40, H41 and H42 (Hawkesbury River east, beneath and west of Peats Ferry Bridge). The sediment quality assessment at these three locations was therefore included in the Stage 2 investigation.

In addition, the assessment of particulate matter contributions from sewage or stormwater discharges to sediments in lower Berowra Creek was addressed by the analysis of silver in surficial sediments at three sampling locations (H3, H5 & H7) in Berowra Creek.

Methodology

2.1 Sediment Sampling

Sediment sampling was undertaken by Dr Carsten Matthai (URS Australia Pty Ltd) and Kristy Guise and Peter Coad (Hornsby Shire Council) using a tall EkmanTM grab sampler (0.15m x 0.15 m x 0.225 m) at all 16 sampling locations. A larger and heavier Ponar grab sampler was deployed at sampling locations near the proposed STP discharge point west of the Hawkesbury River Road Bridge (sampling locations H40, H41, and H42) because the sediment at these locations was generally too gravelly and sandy to be sampled with the EkmanTM grab sampler. Up to 1000 ml of sediment were collected at each site for geochemical analyses. Sampling was conducted on 26 March 2007 from a small motorized boat supplied by Hornsby Shire Council. A Global Positioning System (GPS) was used to locate the sampling locations throughout the study area.

2.1.1 Sediment Subsampling

One sample was collected to a maximum depth of 10 cm at each sampling location. The depth penetration of the grab sampler varied between 3 cm and 10 cm, depending on the sediment texture. The penetration of the grab sampler was generally less in sandy sediment compared to muddy sediment, where a depth penetration of up to 10 cm was achieved. Following retrieval, samples were photographed (Appendix D) and homogenized using a clean stainless steel spoon and bowl. Homogenized samples were transferred into two 250 ml clean, laboratory-supplied, glass jars for geochemical analyses (TBT and organic contaminants), one 150 ml glass jar (silver analysis - sampling locations H3, H5, and H7 only) and one 500 ml resealable plastic bag (grain size analysis - sampling locations H40, H41, and H42 only). One 250 ml glass jar was filled for analysis of organic booster biocides (Irgarol 1051, diuron, dichlofluanid, and chlorothalonil - sampling locations H9, H31, H37, and H37 only). Sample containers were pre-labelled and filled with zero headspace. Samples were then stored in eskies on ice. All eskies were filled to capacity and sealed with adhesive tape.

Samples collected from each sampling location were given unique sample numbers (H3, H5, H7, H8, H9, H10, H17, H18, H21, H22, H23, H24, H25, H26, H28, H31, H37, H38, H40, H41, and H42). A chain-ofcustody (CoC) form was included in the esky. The samples were delivered to the laboratory within 48 hours of sampling for processing and analysis. Sample labels included the sampling date and sample point number/designation.

Essentially, all sample handling and processing were performed to minimize contamination and possible cross-contamination of the samples. The workspace on the boat was frequently washed down with ambient seawater to clean all surfaces and minimize dust contamination of samples. Nitrile gloves were worn by the sampling personnel.

2.1.2 General Field Activities Documentation

Field activity records and observations were noted in bound field logbooks. The aim of the documentation within the field logbooks was to allow future reconstruction of field activities without relying on the memory of field team members. To supplement the information and data collected during sample collection and field testing, field data sheets were also completed and were compiled in Table 2.

Items that were recorded into the field logbook include the sample collection method and health and safety documentation. Field documentation also included the following information:

• Project name and number;

Prepared for Hornsby Shire Council, 20 September 2007 J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

2-1

Methodology

- Date, time, weather conditions;
- Personnel present;
- Type of sample;
- Sampling method;
- Sampling location description, ID and time of collection;
- Sample depth;
- Visual descriptions;
- Sample container type; and
- Photograph number (where applicable).

The field logbook and the field data sheets contain the field data collected during the investigation and the information is summarized in Table 2.

2.2 Sample Handling, Processing and Analysis

This section outlines the general procedures necessary for sample custody that were performed by the analytical laboratory. It is understood that the laboratory (ALS) acted in full accordance with the terms of its NATA Registration for Chemical Testing.

The National Measurement Institute (NMI) performed the analyses of the paint booster biocide compounds (diuron and chlorothalonil - quantitative analysis; Irgarol 1051 and dichlofluanid - semiquantitative analysis). These analyses are not NATA-accredited and the analytical methodology needed to be developed by NMI because these analytes are not routinely determined by the laboratory.

2.2.1 **Chain of Custody Protocols**

A chain of custody (CoC) record was utilised by field personnel to document possession of all samples collected for chemical analysis. The CoC record included the following information:

- Project name and number; •
- Name(s) of sampler(s);
- Sample type, identification number and location; .
- Date and time of collection:
- Number and type of containers; •
- Required analyses; •
- Preservatives; and
- Signatures documenting change of sample custody.

The eskies containing the samples were sealed with tape and secured with a signed custody seal. The custody seal provided an indication of whether the cooler was opened by unauthorised personnel. The

Methodology

temperature that the samples were stored at following transit to the lab and upon receipt was noted on the CoC forms.

The original CoC record accompanied the samples to the analytical laboratory. A copy of the CoC record was placed in the appropriate project file. Samples were delivered to the laboratory within 48 hours of sample collection to ensure the specified analytical holding times were met.

2.2.2 Laboratory Receipt of Samples

Field samples for this project were delivered to the laboratory pre-contained and pre-preserved (as appropriate) in accordance with laboratory procedures. Sample containers used for the collection of field samples were supplied by ALS Environmental, pre-cleaned and inspected. Accompanying each delivery of samples was a CoC form (Appendix E).

The following items were checked and performed by the laboratory upon receipt of samples with the CoC:

- The custody seals and tape on the cooler were unbroken and uncut;
- The signature on the external custody seal matched one of the sampler(s) signature(s) on the internal CoC;
- Measurement was taken to determine if samples had arrived at the appropriate temperature;
- The sample containers within the cooler were intact;
- The identification on the sample containers corresponded to the entries on the CoC;
- The number of sample containers received was equal to the number of samples listed on the CoC;
- When sample custody was confirmed to be valid, the samples were logged in by the laboratory as per the standard operating procedure;
- A copy of the CoC was delivered electronically to the Project Manager within three working days.

2.2.3 Pre-and Post-analysis Storage

Samples were transported to a laboratory within 48 hours of sample collection. After the Sample Custodian logged in the samples, they were placed in temporary refrigerated storage, and maintained at a temperature of 6^oC or less until analyses were performed. Sample analyses were scheduled as soon as practicable following delivery to the laboratory and extractions and analyses were consistent with the analyte holding times specified by the laboratory.

2.2.4 Sediment Analyses

Whole sediment samples from each of the 16 sampling locations, as well as additional samples from the STP site sediment quality assessment and silver analyses of Berowra Creek sediments, were submitted to ALS Environmental, an independent NATA accredited laboratory, for analysis of the analytes listed in Section 1.3. Samples for PAHs, OCPs, OPPs and PCBs were analysed at Ultra Trace limits of reporting, except the three sediment samples from the proposed STP site (H40, H41, and H42), which were analysed at standard limits of detection. All analytical methods are NATA accredited for all of the tests, except for particle size distribution (subcontracted by ALS Environmental to Golder Associates). Analyses of organic booster biocide compounds were performed by the National Measurement Institute (NMI). Certificates of analysis and QA/QC reports are reported in Appendix E.

Section 2 Methodology

2.2.5 Analytical Quality Assurance/Quality Control (QA/QC)

Specific mechanisms for checking the accuracy and precision of analytical data in order to ensure that data quality objectives were met, involve the analysis of the laboratory and field QA check samples.

Laboratory QA/QC Samples

Blanks - contaminant free samples designed to monitor the introduction of artefacts into a process. Reagent blanks or method blanks were analysed to assess the level of contamination which exists in the analytical system and which might lead to the reporting of elevated concentrations or false positive data. A reagent/method blank consists of reagents specific to the method that were carried through clean-up and analysis. Ideally, the concentration of an analyte in the blank is below the reporting limit of that analyte.

Calibration Check Standards – are pre-prepared from the same solution and were used to confirm linearity of the initial calibration curve. Acceptance must be within predicted limits.

Laboratory Duplicates - samples prepared by dividing a field sample into two or more aliquots, then analysed separately. Duplicate samples were considered to be two replicates. Replicate samples should ideally be representative of the originating sample, but in many cases this is not practical due to the nature of the sample; hence the analysis of replicate samples provide an indication of the effect of sample matrix variability on precision, in addition to assessing analytical precision.

Matrix Spikes - are field samples to which predetermined concentrations of analytes have been added. The matrix spike (MS) was taken through the entire analytical procedure and the percent recovery of each analyte was calculated as follows:

Percent Recovery = (SX-X)/(S) x 100%

where, SX = the concentration measured for the spiked sample;

- X = the concentration spiked into the sample; and
- S = the concentration measured for the sample (not spiked).

Percent recovery values provided an indication of the effect of sample matrix on the accuracy of the analysis, in addition to analytical accuracy.

Surrogates - are organic compounds which are similar to analytes of interest in chemical composition, extraction, and chromatography, but which are not normally found in field samples. These compounds were spiked into all sample aliquots prior to preparation and analysis. Percent recoveries were calculated for each surrogate, providing an indication of analytical accuracy including unusual matrix effects and gross sample processing errors.

The following QC checks were performed at a frequency of 1 in 20 field samples or greater for volatile, semi-volatile and metal analytes:

- Reagent/method blanks;
- Calibration check standards;

Prepared for Hornsby Shire Council, 20 September 2007 J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Methodology

- Laboratory duplicates;
- Control spikes; and
- Laboratory Control Samples.

With respect to routine organics analysis, ALS Environmental used spiked samples because of the difficulty in obtaining appropriate, matrix-matched, certified reference materials for all target analytes. ALS QC protocols require the use of an Independent Calibration Verification standard (ICV) for all methods. An ICV was prepared from target analytes obtained from an independent source from those used for calibration standards or as spiking solutions for laboratory control samples and matrix spikes. This provided an indirect independent check of the accuracy of laboratory control and matrix spikes.

2.2.6 Data Handling

All analytical data generated by the analytical laboratory was appropriately reduced and has undergone comprehensive validation prior to reporting. Records and numerical calculations are legible and complete enough to permit reconstruction of the work by a qualified individual other than the originator.

The originating analyst reduced and validated a given data package to ensure that:

- Holding times were met;
- Appropriate standard operating procedures were followed;
- Field sample results were correct and complete (if applicable);
- QC check sample results were correct and complete;
- QC check sample results were within established control limits and data quality objectives; and
- Documentation was complete.

If the originating analyst finds that the validity of data is in doubt due to non-conformance with the above checklist, then the data would be flagged and appropriate corrective procedures initiated.

Once the originating analyst reduced and validated the data package, it was passed onto the Document Control/Quality Assurance Officer, Laboratory Manager, or other appropriately qualified senior personnel for independent review.

A NATA approved signatory signed and released the work reported.

The requirements of the reports include the following:

- The format of the final report is in full accordance with NATA requirements for Chemical Testing, including the provision of a NATA stamp on the covering page if appropriate;
- A summary table of sample number, matrix, date sampled, date received, date prepared/extracted and date analysed is completed;
- All field sample results for each type of sample matrix, as listed on the CoC, are reported collectively on separate tables noting URS sample ID, Laboratory ID and Laboratory sample Batch Number;
- All QA check results are reported. Each type of sample matrix, as listed on the CoC, are reported collectively on separate tables;

Prepared for Hornsby Shire Council, 20 September 2007 J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Methodology

- All water matrix results are expressed as mg/L or μg/L;
- All solid matrix results are expressed as mg/kg or μg/kg (dry weight);
- Full reference to analytical procedures used are stated;
- Modifications to procedures performed outside the requirements of this Methodology Section have been stated;
- Non-conformance to any of the analytical requirements of this Methodology Section are clearly stated;
- A key to abbreviations is provided; and
- Analyte nomenclature remains consistent throughout the entire project.

Following completion, the final report was signed by the appropriate NATA signatory and submitted to URS.

2.2.7 Data Validation

The primary objective of the data validation process is to ensure that the data reported can be used to achieve the project objectives. The validity of all analytical data reported was assessed by URS by critical review of the QC check sample results. This was performed in general accordance with guidance by US EPA guidelines as presented in the document "National Functional Guidelines For Organic Data Review, Multimedia, Multiconcentration (OLMO 1.0) and Low Concentration Water (OLCO 1.0), June 1991", where appropriate (USEPA, 1991).

Two field replicates (QC 3 and QC 4) were collected to assess the reproducibility of the geochemical analyses of TBT and organic compounds and the sampling and subsampling methodology. One field replicate was collected for the three samples near the proposed STP site (H40, H41, and H42) (QC 1) and one field replicate was collected for the three samples obtained for silver analyses (H3, H5, and H7) (QC 2).

The four QC samples represent duplicates of the following primary samples: QC1 = H42, QC2 = H7, QC3 = H31, and QC4 = H9. Field duplicates were used to measure the precision of the whole sampling and analysis process (sample collection, sample preparation and sample analysis). Significant variation in field duplicate results is often observed (particularly for solid matrix samples) due to sample heterogeneity. Field duplicates were analysed for all analytes listed in Section 1.3.

The data validation summary reports for the three analytical batches of samples are shown in Appendix F. These show that the analytical sample batches are suitable for environmental interpretive use. However, due to poor matrix spike recoveries of organic analytes and poor surrogate recoveries in the first batch, samples were reanalysed as discussed below.

Recoveries of OC, PCB and OP surrogates were unusually low for most samples. For the OC surrogate compound, dibromo-DDE, recoveries ranged from 0 (not detected) to 65%, although, only one sample (H23) was below the lower data quality objective set by the laboratory. Recoveries were 0 to 83% for the PCB surrogate compound decachlorobiphenyl, and again, the recovery was below the lower data quality objective for sample H23. Recoveries were 0 to 46% for the OP surrogate compound, DEF, and were below the lower data quality objective of 51% for all 18 samples.

Matrix spike recoveries of OC, PCB and OP compounds were also generally low: 16-75%, 36% and 0-44%, respectively. Most recoveries were below the lower static data quality objective of 70%. In contrast,

Methodology

laboratory control sample (LCS) recoveries of OC, PCB and OP compounds were within acceptable dynamic recovery limits (specified on a per compound basis). In addition, recoveries of OC, PCB and OP surrogates were acceptable for method blank and LCS samples: 70-74%, 75-94% and 111-118% for OC, PCB and OP surrogates, respectively.

Despite the low OC surrogate and matrix spike recoveries, the field duplicate results for samples H9 and QC4 showed good precision for DDE (the only OC pesticide that was detected) with a relative percent difference (RPD) of 17% (for DDE concentrations of 1.12 μ g/kg and 1.33 μ g/kg). Laboratory duplicate results for OCs were all below LORs. Similarly, field and laboratory duplicate results for PCBs and OPs were all below LORs.

Recoveries of PAH surrogates were substantially higher than for OC, PCB and OP surrogates. Recoveries of 2-fluorobiphenyl, anthracene-d10 and 4-terphenyl-d14 in samples were 50-71%, 55-81% and 54-75%, and were within the laboratory recovery limits. Recoveries of PAHs in matrix spike and LCS samples were also within the dynamic recovery limits. Precision of PAH data for field and laboratory duplicates were also reasonable and RPDs were generally below 50%.

The fact that OC, PCB and OP surrogate recoveries were low for all samples, but were not low for the quality control (blank and LCS) samples was suggestive of an unusual matrix interference. The matrix spike results also suggested a strong interference. This matrix interference was atypical in that the chromatograms showed no evidence of interference from co-eluting compounds or high background. Rather, the low surrogate and matrix spike recoveries appeared to be due to strong adsorption to the sediment matrices.

To further investigate matrix interferences, an experiment was conducted in which the sample weight was reduced relative to the solvent volume, from 20 grams to 10grams and 5 grams, in an attempt to increase extraction efficiency. Two samples were tested in this trial: H21 and QC4. These results are attached in Table 1 (Appendix G). While surrogate recoveries were generally improved with the reduced sample weights, there was still some variation in recoveries, particularly for PCBs. Results for OCs and PCBs also showed significant variation from that reported for the positive analytes DDE and Aroclor 1254 (PCB). Results from this trial were inconclusive.

Given that the samples had high water contents that may hinder extraction efficiencies, further testing was undertaken on the samples following ambient air-drying. Results for this testing are attached in Table 2 (Appendix G). Again, surrogate recoveries for OCs, PCBs and OPs in samples were generally low: 16-79%, 9-83% and 15-50%, respectively. Surrogate recoveries for individual samples were also inconsistent between the first and second analyses. There was also some variability in analyte results between the two analyses. Although, this is not unexpected, given that the (non-TOC normalised) concentrations of the detected analytes DDE and Aroclor 1254 were low, only about 1-3 times the analytical limit of reporting.

Like the first analyses, matrix spike recoveries of OC, PCB and OP compounds (for sample H25) were highly variable and frequently low for the second analyses. Also, like the first analyses, surrogate recoveries for the blank and LCS samples were acceptable. Field and laboratory duplicate results for DDE were also acceptable for the second set of analyses with RPDs of 42% and 8%, respectively.

PAH surrogate recoveries for the second set of analyses with sample pre-dying were generally better than those for the initial testing conducted with wet samples: 71-100%, 73-101% and 77-112% for 2-fluorobiphenyl, anthracene-d10 and 4-terphenyl-d14, respectively. PAH analyte results also generally increased with pre-drying, with the exception of the more volatile naphthalene, which would have been reduced in concentration during the drying process. All blank and LCS data for PAHs for the second analyses were acceptable, as were the field and laboratory duplicate data (RPDs generally <50%).

Prepared for Hornsby Shire Council, 20 September 2007 J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Methodology

In summary, the results of the investigation show that the sample matrix for these particular sediment samples interferes significantly in the determination of OPs, OCs and PCBs. ALS has not previously seen such low surrogate recoveries for these analytes in sediment work. The inconsistent analytical results also suggest that the samples may be heterogeneous.

It was suggested that, while analysed outside of holding times, the air dried PAH results be reported, with the exception of naphthalene, given that they have generally increased and are likely to be more representative. Given the inconsistent nature of results and surrogate recoveries for the other analytes, no changes to the originally reported results were considered warranted (Appendix E).

2.3 Geographic Information System

Geochemical data was imported into a GIS database (Mapinfo[™] Professional) for generation and interpretation of spatial data.

2.4 Independent Peer Review

The Draft Report for the Antifoul Study (Stage 2) was reviewed by Dr Stuart Simpson (Principal Research Scientist, Centre for Environmental Contaminants Research, CSIRO) (Appendix H), whose constructive comments have all been addressed and incorporated in this Final Report.

Results

3.1 Sediment Chemistry (Antifoul Study)

3.1.1 Tributyltin

The concentrations of tributyltin (TBT) were determined in sixteen sediment samples from locations in upper Berowra Creek (H7, H8, H9, and H10), Sandbrook Inlet (H17, H18, and H38), Hawkesbury River Marina (H37), and Cowan Creek, including Bobbin Head marina (H21), Apple Tree Bay (H22), Waratah Bay (H23), Smiths Creek (H24), Coal and Candle Creek (H25 and H26), Cottage Point (H28), and Refuge Bay (H31) (Appendix E).

Concentrations of TBT were above the analytical limit of reporting (0.5 μ gSn/kg) in all samples from all 16 sampling locations, and varied from 1.4 μ gSn/kg to 125 μ gSn/kg. The concentrations of TBT in sediments in Berowra Creek decrease from 6.6 μ gSn/kg at H10 to 1.6 μ gSn/kg at H7. Sediments in Sandbrook inlet have TBT concentrations that vary from 1.6 μ gSn/kg to 4.5 μ gSn/kg. The concentration of TBT in sediments at the marina at Brooklyn (H37) is 10.4 μ gSn/kg. In Cowan Creek and its tributary creeks, the concentrations of TBT are highly variable, with concentrations of <2 μ gSn/kg at Waratah Bay, Smiths Creek and Refuge Bay, compared to concentrations of 22.9 μ gSn/kg at Apple Tree Bay and 125 μ gSn/kg at Bobbin Head marina (Figure 2).

Four of the six highest TBT concentrations in sediments were obtained from sampling locations at or near marinas, including the two highest concentrations (Figure 2). In contrast, the five lowest concentrations of TBT of <2 μ gSn/kg were all from locations that were not adjacent to marinas. Sediments in areas of high boat use, such as Refuge Bay, also contained concentrations of TBT <2 μ gSn/kg.

3.1.2 Organic Compounds

The concentrations of organic compounds in sediments from the sixteen sampling locations are shown in Appendix E and summarized below. As discussed in Section 2.2.7, the concentrations of PAHs of reanalysed pre-dried samples, with the exception of naphthalene, are reported:

BTEX:

The concentrations of Benzene, Toluene, Ethylbenzene, meta- & para-Xylene, and ortho-Xylene were below the analytical limit of reporting (<0.2 mg/kg for all samples, except H25 and H28 - 0.1 mg/kg) in all samples.

Total Petroleum Hydrocarbons:

The concentrations of total petroleum hydrocarbons (TPH) were below the analytical limit of reporting in all samples. The analytical limit of reporting varied from 10 mg/kg for the C6-C9 fraction, 50-140mg/kg for the C10-C14 fraction, 100-270 mg/kg for the C15-C28 fraction, and 100-270 mg/kg for the C29-C36 fraction.

Prepared for Hornsby Shire Council, 20 September 2007

J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Results

Organophosphorus Pesticides:

The concentrations of all organophosphorus pesticide compounds analysed (Bromophos-ethyl, Carbophenothion, Chlorfenvinphos (E), Chlorfenvinphos (Z), Chlorpyrifos, Chlorpyrifos-methyl, Demeton-S-methyl, Diazinon, Dichlorvos, Dimethoate, Ethion, Fenamiphos, Fenthion, Malathion, Azinphos Methyl, Monocrotophos, Parathion, Parathion-methyl, Pirimphos-ethyl, and Prothiofos) were below the analytical limit of reporting of 0.5 μ g/kg in all samples.

Organochlorine Pesticides:

The concentrations of all organochlorine pesticide compounds analysed (Aldrin, alpha-BHC, beta-BHC, delta-BHC, 4.4'-DDD, 4.4'-DDE, 4.4'-DDT, DDT (total), Dieldrin, alpha-Endosulfan, beta-Endosulfan, Endosulfan sulphate, Endosulfan, Endrin, Endrin aldehyde, Endrin ketone, Heptachlor, Heptachlor epoxide, Hexachlorobenzene (HCB), gamma-BHC, Methoxychlor, cis-Chlordane, trans-Chlordane, and total Chlordane) were below the analytical limit of reporting of 10 μ g/kg in all samples, with the exception of 4.4' DDE in samples from Berowra Creek (H8 - 0.66 μ g/kg, H9 - 1.12 μ g/kg, H10 - 0.53 μ g/kg), and upper Cowan Creek (H21 - 1.04 μ g/kg).

Polychlorinated Biphenyls:

The concentrations of all PCBs analysed (Aroclor 1016, Aroclor 1221, Aroclor 1232, Aroclor 1242, Aroclor 1248, Aroclor 1254, and Aroclor 1260) were below the analytical limit of reporting of 5 μ g/kg in all samples, with the exception of Aroclor 1254 in samples from Cowan Creek (H21 – 13.9 μ g/kg) and Cottage Point (H28 - 16 μ g/kg).

Polynuclear Aromatic Hydrocarbons:

The analytical limit of reporting for concentrations of PAHs (2-Methylnaphthalene, 7.12-Dimethylbenz(a)anthracene, Acenaphthene, Acenaphthylene, Anthracene, Benz(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(e)pyrene, Benzo(g.h.i)perylene, Benzo(k)fluoranthene, Chrysene, Coronene, Dibenz(a.h)anthracene, Fluoranthene, Fluorene, Indeno(1.2.3.cd)pyrene, N-2-Fluorenyl Acetamide, Naphthalene, Perylene, Phenanthrene, Pyrene) was 10 µg/kg (except for N-2-Fluorenyl Acetamide - 100 µg/kg).

As discussed in Section 2.2.7, the pre-dried analytical data are reported below (Table 3), except for naphthalene, for which the originally analysed data is reported.

The concentrations of PAH compounds exceeded the analytical limit of reporting in one or more samples for almost all compounds, except for 3-methylcholanthrene, 7.12-Dimthylbenz(a)anthracene and N-2-fluorenyl acetamide, which were below the limit of reporting in all samples (Table 3). Low molecular weight PAHs (assuming half the detection limit for compounds that were below the analytical limit of reporting) varied between 65 μ g/kg and 420 μ g/kg. High molecular weight PAHs varied between 165 μ g/kg and total PAH concentrations varied between 405 μ g/kg and 7,040 μ g/kg.

Total PAH concentrations <1,000 μ g/kg were found in samples from Cowan Creek - Smiths Creek (H24), Refuge Bay (H31), Akuna Bay marina (H25) and Cottage Point (H28). In contrast, total PAH concentrations of >2,000 μ g/kg were present in sediments from Sandbrook Inlet (H18, H38), Hawkesbury River marina (H37), Cowan Creek marina (H21), Apple Tree Bay (H22), and Akuna Bay marina refuelling station (H26).

Section 3 Results

3.1.3 Organic Booster Biocides

The analysis of the four organic booster biocide compounds diuron, chlorothalonil, Irgarol and dichlofluanid in sediments from sampling locations H9 (Berowra Creek marina), H31 (Refuge Bay), H37 (Hawkesbury River marina), and H38 (Sandbrook Inlet) resulted in all analyte concentrations being reported below the analytical limit of reporting (<0.1 mg/kg) in all four samples. However, inspection of chromatograms allowed a greater sensitivity of analysis with a detection limit of 0.001 mg/kg and revealed low concentrations of diuron in sediments at three of the four sampling locations, with concentrations of 0.009 mg/kg (H37), 0.01 mg/kg (H38), 0.03 mg/kg (H9), and 0.04 mg/kg (QC5 = H9). There was no visible chromatographic peak for diuron in the sediment from sampling location H31 (Refuge Bay) (<0.001 mg/kg), which was sampled to determine if areas of high boat use significantly contribute biocides to the estuary. An effort was made to sample both marina and non marina areas with high boat use for comparison.

It should be noted that these analytes are not routinely analysed by any major laboratory in Australia (i.e. ALS Environmental, National Measurement Institute – NMI) and that NMI, the analytical laboratory which performed the organic booster biocide analyses of sediments in this investigation, needed to develop the analytical methodology, which included the purchase of laboratory-grade standards and instrument calibration assays.

3.2 STP Site Sediment Chemistry

3.2.1 Sediment Texture and Grain Size

Sediments were collected in the immediate vicinity of the proposed Brooklyn and Dangar Island Sewage Treatment Plant (STP) discharge point beneath Peats Ferry Bridge at water depths between 15.4 and 18.5 m. Large bivalve shells and shell fragments were observed at all three sampling locations and these were removed by hand prior to wet-sieving. Hence, there was no gravel (>2 mm) present in any sample. Sediment texture at the three locations varied from dark grey, shelly, clayey sand to silty clay with some sand (Appendix E). Mud contents varied from 26% (H40) to 77% (H41).

3.2.2 Inorganic Analytes and Nutrients

The concentration ranges of inorganic analytes are summarized in Appendix E. The concentrations of analytes in the three samples were below the analytical limit of reporting for organic contaminants and generally similar for most analytes, although highly variable for calcium (Range: 5,320 mg/kg to 30,900 mg/kg) due to the large shell component in the sample.

Aluminium

The concentrations of aluminium vary from 6,860 mg/kg to 14,000 mg/kg which reflects the variations of mud content (<63 μ m fraction) in the sediment. The highest concentration of aluminium of 14,000 mg/kg in sediment at location H41 has a corresponding mud content of 71%, compared to a concentration of aluminium of 6,860 mg/kg in sediment from location H40 (mud content: 26%).

Prepared for Hornsby Shire Council, 20 September 2007 J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Results

Arsenic

Concentrations of arsenic varied from 12-14 mg/kg, which is below the highest observed concentrations of arsenic of >20 mg/kg in sediments in Sandbrook Inlet, Refuge Bay, and Coal and Candle Creek, as shown in the Sediment Study (Stage 1) (Appendix A).

Barium

Barium concentrations varied from 20-30 mg/kg, which is similar to the concentrations of barium in sediments determined during the Sediment Study (Stage 1) (Appendix A).

Beryllium

The concentrations of beryllium varied from <1 mg/kg to 1 mg/kg, which is is similar to the concentrations of beryllium in sediments determined during the Sediment Study (Stage 1) (Appendix A).

Cadmium

The concentrations of cadmium were below the analytical limit of reporting (<1 mg/kg) in all three samples.

Chromium

Concentrations of chromium varied from 11-20 mg/kg, which is below the concentrations of >30 mg/kg previously observed at Berowra Creek marina, Bobbin Head marina, Akuna Bay marina, and Hawkesbury River marina (Appendix A).

Cobalt

Concentrations of cobalt in sediments varied from 8-11 mg/kg, which corresponds to the previous assessment (Appendix A) that showed cobalt concentrations of generally <10 mg/kg in sediments which contain a relatively high sand component (i.e. sandy clays and clayey sands).

Copper

Copper concentrations varied from 8-18 mg/kg, which is substantially below the concentrations of copper of up to >65 mg/kg in sediments at several locations in headwaters of Cowan Creek, Berowra Creek and at Cottage Point (Appendix A). In contrast, concentrations of copper at other locations in the main Hawkesbury River channel were generally <20 mg/kg (Appendix A).

Iron

Concentrations of iron varied from 17,100 mg/kg to 25,700 mg/kg, which compares to iron concentrations >30,000 mg/kg in sediments from a number of locations in the upper Hawkesbury River, Berowra Creek, Sandbrook Inlet and Cowan Creek (Appendix A).

Prepared for Hornsby Shire Council, 20 September 2007 J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Results

Lead

Concentrations of lead varied from 13-21 mg/kg, which is substantially below the concentrations of lead of >50 mg/kg and up to 179 mg/kg in sediments at Berowra Creek, Cowan Creek (including Coal and Candle Creek and Akuna Bay) and at Hawkesbury River marina (Appendix A). Concentrations of lead in sediments of the Hawkesbury River channel at other locations were generally <30 mg/kg (Appendix A).

Magnesium

Concentrations of magnesium varied from 2,500 mg/kg to 4,390 mg/kg, which is similar to the concentrations of magnesium in sediments at other locations of the main Hawkesbury River Channel (<5,000 mg/kg) (Appendix A).

Manganese

Manganese concentrations varied from 261-347 mg/kg, which is substantially less than manganese concentrations >800 mg/kg and up to 9,820 mg/kg in sediments of the upper study area of the Lower Hawkesbury River, Mullet Creek, Cowan Creek and Berowra Creek (Appendix A).

Mercury

Concentrations of mercury varied from below the limit of reporting (<0.1 mg/kg) to 0.2 mg/kg in sample H40, compared to concentrations of up to 0.9 mg/kg observed during the Sediment Study (Stage 1) (Appendix A).

Nickel

Nickel concentrations in sediments varied from 8-15 mg/kg. The highest concentrations of nickel (>15 mg/kg) are present in the mud flats of Berowra Creek, Cowan Creek and Sandbrook Inlet, as well as in the upper sections of the Hawkesbury River (Appendix A).

Strontium

Strontium concentrations in surficial sediments in the study area varied from 54-139 mg/kg, which compares favourably to concentrations of up to 147 mg/kg observed previously (Appendix A).

Vanadium

Vanadium concentrations in sediments varied from 30-46 mg/kg, which compares to vanadium concentrations >60 mg/kg in Cowan Creek, Sandbrook Inlet and Mullet Creek (Appendix A).

Zinc

Concentrations of zinc in sediments varied from 47-61 mg/kg, which is substantially lower than the maximum concentration of zinc observed previously (412 mg/kg) but similar to the concentrations of zinc in sediments of the main Hawkesbury River channel (<90 mg/kg) (Appendix A).

Prepared for Hornsby Shire Council, 20 September 2007 J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App

B - Antifoul Study (Stage 2) - Report/Antifoul Study Final Report R001.doc

Results

Calcium

Concentrations of calcium varied from 5,320 mg/kg to 30,900 mg/kg. Although sediments in the main Hawkesbury River channel generally contain <5,000 mg/kg calcium (Appendix A), the presence of abundant shell fragments in sediment from sample location H40 accounts for the high calcium concentration >30,000 mg/kg at that location.

Nitrate and Nitrite

Concentrations of nitrate and nitrite varied from 0.12-0.26 mg/kg. In contrast, the concentrations of nitrate and nitrite in sediments at other locations in the Hawkesbury River were generally very low, (<0.1 mg/kg to 0.2 mg/kg) (Appendix A). The highest concentration of nitrate and nitrite of 0.26 mg/kg was observed at location H40, where abundant shell fragments and bivalves indicate a high biological activity.

Total Kjeldahl Nitrogen

The concentrations of TKN varied from 640 mg/kg to 1,420 mg/kg, which compares to TKN concentrations >3,000 mg/kg (Maximum: 9,980 mg/kg) in sediments of Cowan Creek and Berowra Creek (Appendix A). Sediments in the main Hawkesbury River Channel generally contain <1,500 mg/kg (Appendix A).

Reactive Phosphorus

Concentrations of reactive phosphorus varied from <0.1 mg/kg to 0.11 mg/kg, which is similar to the concentrations in sediments at other locations in the Hawkesbury River (Appendix A).

Total Organic Carbon

The concentrations of total organic carbon (TOC) varied from 1.0% to 4.0%. Organic-rich sediments (>10% TOC) are present in Berowra Creek and southwest of Milson Island in the Hawkesbury River (Appendix A). In addition, a distinct regional trend in the TOC contents of sediments is present in the Hawkesbury River, where sediments contain between 5% and 10% TOC, decreasing east of Mooney Mooney to <5% TOC (Appendix A).

3.2.3 Organic Contaminants

All organic contaminants (polychlorinated biphenyls, organochlorine pesticides, organophosphorus pesticides, polynuclear aromatic hydrocarbons, total petroleum hydrocarbons and BTEX) in sediments from sample locations H40, H41 and H42 were below the standard analytical limits of reporting (Appendix E).

3.3 Silver Concentrations in Sediments in Berowra Creek

The concentrations of silver in surficial sediments at sampling locations H3, H5, and H7 were <0.1 mg/kg, 0.1 mg/kg and 0.2 mg/kg, respectively.

Prepared for Hornsby Shire Council, 20 September 2007

J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Discussion

4.1 Sediment Quality

The sediment geochemical data for TBT and other organic compounds was screened against ANZECC/ARMCANZ (2000) sediment quality guideline values (ISQG-L (Trigger Value) and ISQG-H). The general approach outlined in the ANZECC/ARMCANZ (2000) sediment quality guidelines stipulates that if the lower sediment quality guideline values for a contaminant (i.e. ISQG-L – Trigger Value) is not exceeded, it is unlikely that it will result in any biological disturbance for organisms inhabiting that sediment. If the trigger value is exceeded, either management (including remedial) action is taken, or additional site-specific studies may be conducted to determine whether this exceedence poses a risk to the ecosystem.

Normalization of the concentrations to 1% total organic carbon is required for organic compounds and tributyltin. Table 4 summarizes the normalized concentrations of PAH compounds and TBT (normalized to 1% total organic carbon) (all other compounds are below the limit of reporting, except for concentrations of 4.4' DDE and total DDT in four samples, which vary between 0.53 μ g/kg and 1.12 μ g/kg, which is below the sediment quality guideline values for these compounds). Table 4 also displays the total organic carbon content of sediments at each sampling location.

The total organic carbon content at each sampling location exceed 1.96% (Range: 1.96% to 6.75%). Using the TOC concentrations at each location and normalizing the concentrations of PAHs and TBT to 1% TOC results in concentrations below the ANZECC/ARMCANZ sediment quality guideline ISQG-L values for all PAHs and TBT at all locations, except for TBT (5 μ gSn/kg) at four locations (H21 – Bobbin Head marina; H25 and H26 - Akuna Bay marina; H28 - Cottage Point kiosk). Concentrations of PAH compounds (normalized to 1% organic carbon) do not exceed the sediment quality guideline values at any of the 16 sampling locations (Table 4). It should be noted that PAH compounds that were quantified in the current investigation are present at concentrations that are greater than five times the analytical limit of reporting, although all PAHs were below the ANZECC/ARMCANZ (2000) ISQG-L values.

The presence of PAHs in these sediments is likely to be of anthropogenic origin, in particular at locations adjacent to increased boating activity. However, PAHs are also produced by combustion of wood during bushfires and the widespread distribution of these compounds in sediments in the lower Hawkesbury/Nepean River suggests that natural contributions from burnt organic matter originating from bushfires over long periods of time may have resulted in this regional contaminant distribution, especially as the concentrations of silver in surficial sediments at sampling locations H3, H5 and H7 in Berowra Creek were below the analytical detection limit.

Exceedences of sediment quality guideline values are limited to TBT at locations in the vicinity of marinas in Cowan Creek and Coal and Candle Creek, and the kiosk at Cottage Point, where a high density of recreational boating activity exists.

4.2 Potential Sources of TBT to Sediments

Tributyltin (TBT) is a biocide and catalyst used worldwide. TBT compounds have particularly been used as biocides in antifouling paints and wood preservatives (Hagger et al., 2005). The need for effective antifoulants, which prevent the settlement and growth of marine organisms on submerged structures, such as buoys, fish cages and ship's hulls, is recognised universally (Evans et al., 2000; Konstantinou and Albanis, 2004). For many years, tributyltin (TBT) compounds were the most widely used active ingredients in paint formulations. However, use of TBT has been regulated internationally since 1990 (1989 in New South Wales, Australia – Gibson and Wilson, 2003) due to its severe impact on the aquatic ecosystem (Fent, 1996) and the demonstrated effects of TBT on the disruption of the endocrine system

Discussion

by mimicking or inhibiting the action of gonadal steroid hormones, oestradiol and testosterone (Makita and Omura, 2006). Leachate of TBT compounds has contaminated both marine and freshwater habitats and it has been considered one of the most toxic agents entering the environment (Hagger et al., 2005).

Prior to the ban on the use of TBT as antifouling compound, the source of alkyltins (monobutyltin, dibutyltin and tributyltin) to the waterways of the Hawkesbury River system used to be chiefly from the leaching of antifouling paints from locally moored commercial and recreational vessels and to a lesser extent leaching from PVC pipes used in domestic and industrial plumbing (EPA, 1996). However, elevated concentrations of alkyltins in estuarine sediments are principally associated with commercial marinas and boatyard facilities in areas of limited water movement or tidal flushing (SPCC, 1988). TBT compounds tend to have medium range water solubility and tend to sorb to particulate matter and suspended solids. These compounds are therefore settling with the particulate matter and, as a result, increase the concentrations of TBT in the sediments (Dowson, 1992). The water solubility of tributyltin is strongly affected by pH. TBT's solubility ranges from 0.75 to 31 g/kg over the pH-range of 2.6 to 8.1 (Uhler et al., 2000).

Of particular concern has been the induction of reproductive abnormalities and sterilisation of female marine prosobranch snails caused by tributyltin based compounds. Prolonged release of TBT from shipbottom coatings has resulted in the imposition of male sexual characteristics upon female gastropods, or imposex, a phenomenon which was first described by Blaber (1970) in the United Kingdom. Imposex in marine gastropods has subsequently been linked to the exposure of these benthic biota to TBT in aquatic systems worldwide (e.g. Smith, 1981a,b,c; Santos et al., 2004). This cause and effects relationship ultimately resulted in a global ban of TBT. The decline in the occurrence of imposex following worldwide bans has been used as a biomarker and biological indicator for environmental monitoring of TBT since the introductions of these bans in countries worldwide (Axiak et al., 2003). The ban on the use of TBT, is primarily due to the adverse effects on the various shellfish, in particular the occurrence of imposex in aquatic biota (Gibson and Wilson, 2003).

The use of TBT for antifouling was regulated from 1989 in New South Wales (Gibson and Wilson, 2003). TBT is banned from use on small vessels (i.e. less than 25m in length) and is being phased out on larger and international vessels. However, despite the partial ban on the use of TBT in Australia, a survey of imposex in *Thais orbita* (Neogastropoda) along the NSW coast found imposex was still widespread 10 years after the introduction of the ban, in particular within harbour/bay areas, where contamination "hotspots" are still present and where physical remobilization and dispersion processes may be less pronounced compared to high-energy coastal areas (Gibson and Wilson, 2003).

Australia is signatory to the *International Convention on the Control of Harmful Anti-fouling Systems on Ships* (2001), which prohibits the use of harmful organotins in anti-fouling paints used on ships and which establishes a mechanism to prevent the potential future use of other harmful substances in anti-fouling systems. Under the terms of the Convention, Parties to the Convention are required to prohibit and/or restrict the use of harmful anti-fouling systems on ships flying their flag, as well as ships not entitled to fly their flag but which operate under their authority and all ships that enter a port, shipyard or offshore terminal of a Party.

Ships of above 400 gross tonnage and above engaged in international voyages (excluding fixed or floating platforms, FSUs and FPSOs) will be required to undergo an initial survey before the ship is put into service or before the International Anti-fouling System Certificate is issued for the first time; and a survey when the anti-fouling systems are changed or replaced. Ships of 24 m or more in length but less than 400 gross tonnage engaged in international voyages (excluding fixed or floating platforms, FSUs and FPSOs) will have to carry a Declaration on Anti-fouling Systems signed by the owner or authorized agent.

The harmful environmental effects of organotin compounds were recognized by IMO in 1989. In 1990 IMO's Marine Environment Protection Committee (MEPC) adopted a resolution which recommended that Governments adopt measures to eliminate the use of anti-fouling paint containing TBT on non-aluminium

Discussion

hulled vessels of less than 25 m in length and eliminate the use of anti-fouling paints with a leaching rate of more than 4 μ g/d of TBT.

In November 1999, IMO adopted an Assembly resolution that called on the MEPC to develop an instrument, legally binding throughout the world, to address the harmful effects of anti-fouling systems used on ships. The resolution called for a global prohibition on the application of organotin compounds which act as biocides in anti-fouling systems on ships by 1 January 2003, and a complete prohibition by 1 January 2008.

By 1 January 2008 (effective date), ships either:

- shall not bear such compounds on their hulls or external parts or surfaces; or
- shall bear a coating that forms a barrier to such compounds leaching from the underlying noncompliant anti-fouling systems.

This applies to all ships (including fixed and floating platforms, floating storage units (FSUs), and Floating Production Storage and Offtake units (FPSOs).

Importantly, the presence of TBT in sediments is not necessarily linked to silts and muds because TBT may occur in flakes that may be deposited in higher energy sandy areas, such as shipping channels. Therefore, TBT may potentially be present in measurable quantities in sediments in areas that may not otherwise exhibit elevated concentrations of inorganic analytes or organic compounds.

The USEPA (2003) has undertaken a review on TBT which contains a very extensive review of biological effects of TBT. It has been proposed by CSIRO to the Department of Environment and Water Resources (DEW) that these guidelines be adopted for TBT in Australia.

4.3 Temporal Variations of TBT in Hawkesbury River Sediments

4.3.1 1990-1991 Baseline Contaminant Survey (EPA, 1996)

A baseline contaminant survey of the Hawkesbury River estuary in December 1990-January 1991 (EPA, 1996) established the concentrations of alkyltin compounds in sediments at a number of locations within the Hawkesbury River estuary. The EPA (1996) baseline survey of sediments involved the collection of 158 surface sediment grab samples from 102 sample locations and analysis for trace metals, organochlorine compounds, nutrients, TBT, grain size and organic matter. The sampling locations were selected randomly from a sample grid and random triplicate samples were collected at 28 sampling locations.

The concentrations of TBT in the 1990-1991 sediment investigation of Hawkesbury River estuary sediments at 28 sampling locations varied from 0.1 μ gSn/kg to 9.6 μ gSn/kg, with a mean concentration of 0.9 μ gSn/kg (EPA, 1996). However, the highest concentrations of TBT in sediments were found in Pittwater, which was not included in the current Antifoul Study (Stage 2). The outcomes of the EPA (1996) sediment study are summarized as follows:

- Berowra Creek: 4 sampling locations; Mean concentrations vary from 0.1-0.4 μgSn/kg;
- Brooklyn/Sandbrook Inlet: 3 sampling locations; Mean concentrations vary from 0.8-2.1 μgSn/kg;
- Cowan Creek: 5 sampling locations; Mean concentrations vary from 0.1-2.8 μgSn/kg;
- Hawkesbury River: 8 sampling locations; Mean concentrations vary from 0.1-0.6 μgSn/kg;

Discussion

- Mooney Mooney Creek: 1 sampling location; Mean concentration of 0.1 μgSn/kg; and
- Mullet Creek: 1 sampling location; Mean concentration of 0.1 μgSn/kg.

The highest mean concentrations of TBT in sediments reported in EPA (1996) were in the eastern end of Sandbrook Inlet (the Gut) (2.1 μ gSn/kg), upper Coal and Candle Creek (near Akuna Bay marina) (1.1 μ gSn/kg) and upper Cowan Creek (2.8 μ gSn/kg).

4.3.2 2007 Antifoul Study

A significant difference between the EPA (1996) investigation of sediments in the Hawkesbury River estuary (sampled in 1990-1991) and the current Antifoul Study (Stage 2) in 2007 is that in the current investigation the sampling locations were selected based on a hierarchical approach that was based on the outcomes of the Sediment Study (Stage 1) and the inferred proximity to anthropogenic sources of contaminants, in particular TBT, from marinas.

The concentrations of TBT in sediments at the 16 sampling locations within the Hawkesbury River system, including Cowan Creek and Berowra Creek, are high at a number of sampling locations adjacent to marinas compared to locations elsewhere. This corresponds to elevated concentrations of heavy metals at these locations in the vicinity of marinas, as shown in the Sediment Study (Stage 1) (Appendix A). There is a pronounced regional distribution of concentrations of TBT in sediments that identifies local point sources within the Hawkesbury River system, in particular in areas of recreational boating activities. These results are consistent with previous sediment chemistry investigations for other organic and inorganic contaminants in the Hawkesbury River system (EPA, 1996, Birch et al., 1998, Birch et al., 1999), which have also highlighted high density boating activities as significant but localized contributors of contaminants to sediments.

Sediments in upper Cowan Creek (Locations H21 and H22) and upper Berowra Creek (Locations H9 and H10) display elevated concentrations of inorganic and organic contaminants, thereby demonstrating the potential for water-related recreational facilities to affect pristine environments. Although the current Antifoul Study (Stage 2) investigation is not addressing the potential for bioavailability of TBT, it has been shown that TBT is chemically mobile and therefore bioavailable to aquatic organisms and fish, an aspect that may require further investigations in the future.

The spatial distribution of TBT (Section 3.1.1) and the exceedances of ISQG-L (Trigger Value) and ISQG-H (High) sediment quality guideline values have established that there is a distinct relationship between proximity to recreational boating centres (marinas) and elevated concentrations of TBT in surficial sediments (Figure 3). The outcomes of the current Antifoul Study (Stage 2) are summarized as follows:

- Brooklyn/Sandbrook Inlet: 4 sampling locations; Concentrations vary from 1.6-10.4 μgSn/kg;
- Cowan Creek: 8 sampling locations; Concentrations vary from 1.4-125 μgSn/kg;
- Hawkesbury River: not sampled;
- Mooney Mooney Creek: not sampled; and
- Mullet Creek: not sampled.

4.3.3 Summary of Temporal Changes in TBT Concentrations

The locations in upper Berowra Creek, Sandbrook Inlet and Cowan Creek (Akuna Bay) have shown to display elevated concentrations of TBT in sediments in both the EPA (1996) sediment investigation and

Prepared for Hornsby Shire Council, 20 September 2007

J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Discussion

the current investigation. However, the concentrations of TBT in 2007 are substantially higher compared to the concentrations of TBT in sediments sampled in 1990-1991 (EPA, 1996). However, it should also be noted that sediment TBT heterogeneity is often high and that there is always much uncertainty in TBT analyses, which makes a comparison of TBT data with differences of less than 1-2 orders of magnitude problematic (S. Simpson, CSIRO, pers. comm., 2007).

TBT concentrations in Berowra Creek sediments, as determined in 2007, exhibit a distinct gradient, with concentrations decreasing from 6.6 μ gSn/kg to 1.6 μ gSn/kg. These concentrations are substantially greater than the mean concentrations of 0.1-0.4 μ gSn/kg measured in 1990-1991 (EPA, 1996). Similarly, the mean concentrations of TBT in sediments in Sandbrook Inlet and at Brooklyn varied from 0.8 μ gSn/kg to 2.1 μ gSn/kg in 1990-1991 (EPA, 1996), compared to a range from 1.6 μ gSn/kg to 10.4 μ gSn/kg in 2007. In addition, the mean concentrations of TBT in sediments in Cowan Creek (including Coal and Candle Creek) were <2.8 μ gSn/kg (range: 0.1-2.8 μ gSn/kg) (EPA, 1996) compared to a range of 1.4-125 μ gSn/kg in 2007.

The temporal increase in the concentrations of TBT in sediments in Berowra Creek, Sandbrook Inlet/Brooklyn and Cowan Creek between 1990/91 and 2007 is likely to be a result of the different sampling methodologies used in the two studies. Whereas the EPA (1996) investigation utilized a random grit sampling methodology, the 2007 Antifoul Study (Stage 2) followed a hierarchical sampling approach with the intention to establish contaminant concentrations at likely point sources of contaminants (i.e. marinas and urban developments). The outcomes of these substantially different approaches are therefore not directly comparable, although it should be noted that TBT has been banned in NSW and Australia since the late 1980s and that it would be expected that a period of 16 years between the two sampling programmes results in substantially lower concentrations of TBT in the surficial sediments in 2007 compared to 1990-1991 (i.e. <10 cm depth).

A significant factor in the assessment of the concentrations of TBT and other contaminants in sediments is the likelihood of the concentrations of contaminants varying substantially over small spatial scales of a few metres and less. This is particularly important in the case of TBT, since it often appears in the form of paint flakes, resulting in a generally patchy contaminant distribution, or local 'hot spots' (S. Taylor, pers. comm., 2007). Regional trends, although apparent, may be confounded by the presence of local hot spots of contamination, in particular in the vicinity of known or potential point sources of contamination.

The presence of elevated concentrations of TBT in surficial sediments adjacent to marinas in 2007 suggests that the deposition of present-day TBT-free particulate matter is consistently bioturbated and mixed with underlying TBT-enriched sediments. This continuous mixing process results in only slight dilutions near existing recreational boating facilities, which have been operating for many years prior to the implementation of the TBT ban, and where the presence of high concentrations of TBT in the sediments is likely to be a legacy of past shore-based activities and hull cleaning operations at slipways.

Although temporal changes in the concentrations of TBT and other contaminants in sediments are unlikely to be discernible in the bioturbated surface layer of sediments (i.e. approximately the upper 10 to 50 cm of sediments), deep sediment cores (>1m depth) at these sampling locations would allow an assessment of the long-term variations of contaminant concentrations beyond the currently assessed 16 year period. It is possible that although the concentrations of TBT are relatively high and possibly constant throughout the bioturbated sediment layer there may be even higher concentrations of TBT in sediments below the bioturbated mixing zone. This would reflect the past widespread use of TBT in marine boating and result in peak concentrations of TBT in sediment at a depth that corresponds to the time prior to the commencement of the TBT ban (i.e. pre-1989). However, unless additional core data is obtained, especially at some locations where the concentrations of TBT in the sediments exceed the ISQG-L (Trigger value) of 5 μ gSn/kg, it is not possible to ascertain the vertical extent and lateral distribution of the elevated TBT concentrations.

Prepared for Hornsby Shire Council, 20 September 2007 J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Discussion

An important finding is the presence of TBT at least three times greater than the analytical limit of reporting (0.5 μ gSn/kg) at all sixteen sampling locations, despite the absence of any apparent point sources of TBT at some locations (e.g. H7 – Berowra Creek (Calabash Bay); H23 – Waratah Bay; H24 – Smiths Creek; H31 – Refuge Bay). This suggests a regional presence of TBT in sediments that is likely to be the result of resuspension and downstream transport of particulates from the upper reaches of the two major Creeks and the dispersion and transport of TBT from recreational vessel movements into previously pristine areas. Although concentrations of <5 μ gSn/kg are unlikely to result in adverse biological effects in benthic biota, the widespread presence of TBT, albeit at low concentrations, is an indication of an enlarged anthropogenic footprint beyond the immediate proximity of marinas, due to increasingly common recreational boating activity in this region.

4.3.4 Other Previous TBT Studies

Previous investigations to characterise the physical and geochemical characteristics of sediments to be removed from Hawkesbury River marina during maintenance dredging included the determination of TBT and have been discussed in Patterson Britton (2003). Dames and Moore (1999) reported that isolated areas of TBT exceedances in sediments above the then applicable ANZECC (1992) interim sediment quality guideline values of 5 μ gSn/kg and 37 μ gSn/kg existed in the area of assessment at Brooklyn Harbour. Concentrations of 7 μ gSn/kg and 37 μ gSn/kg were determined at two 'isolated areas' at the edge of the navigation channel in the vicinity of the Brooklyn Baths and at a location within the navigation channel opposite the slipway.

A sediment investigation by Patterson Britton (2001) detected TBT at concentrations above the ANZECC/ARMCANZ (2000) ISQG-L sediment quality guideline value, with concentrations varying from 8-56 μ gSn/kg at five of ten sampling locations. The high concentrations of TBT were confirmed by the result of the current investigation, which established a TBT concentration of 10.4 μ gSn/kg at sampling location H37 (Hawkesbury River marina). Given the procedural uncertainties that are associated with sampling and analysis and small-scale spatial variability of the concentrations of TBT in the sediments, this outcome confirms the presence of elevated concentrations of TBT in sediments at Hawkesbury River marina.

4.3.5 TBT in Hawkesbury River Sediments Compared to Sediments Worldwide

The concentrations of TBT in sediments in the lower Hawkesbury River varies substantially at the 16 sampling locations, from 1.4 μ gSn/kg to 125 μ gSn/kg, with at TBT concentration of >5 μ gSn/kg at 9 of the 16 locations. The TBT concentrations at these locations exceed the ANZECC/ARMCANZ (2000) sediment quality guideline trigger values of 5 μ gSn/kg (low) and 70 μ gSn/kg (high). However, it should be noted that the concentrations of TBT in sediments of the lower Hawkesbury River system are low compared to other regions in Australia and worldwide (Table 5). For example, concentrations of TBT >100 μ gSn/kg are commonly exceeded in sediments in harbours, shipyards and even coastal areas in Europe and Asia. Even sediments in the Ross Sea (Antarctica) where anthropogenic activities are generally restricted, has shown to contain elevated concentrations of TBT in sediments of >2,000 μ gSn/kg. Concentrations of TBT in sediments of >3,000 μ gSn/kg and up to 53,000 μ gSn/kg have been found in sediments in coastal areas in Thailand, marinas and shipyards in Hong Kong and the North and Baltic Sea, and United Kingdom estuaries (Table 5). In contrast, the Hawkesbury River system is generally considered a pristine river system surrounded by National Parks, with only localized contamination in the vicinity of marinas and in the upper reaches of Berowra Creek and Cowan Creek.

Prepared for Hornsby Shire Council, 20 September 2007 J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Discussion

4.4 Organic Paint Booster Biocides

Although copper is effective against the majority of fouling organism, several algal biofoulers show marked physiological tolerance to copper (Voulvoulis et al., 2000; Amog Consulting, 2002). A booster biocide is therefore usually incorporated in copper based antifouling paints to control copper-resistant species. In the United Kingdom, for example, twelve booster biocides are used as active ingredients in approved antifouling products: Irgarol 1051, diuron, Kathon 5287 (Sea-Nine 211), maneb, zineb, thiram, ziram, chlorothalonil, dichlofluanid, TMTB, TCMS pyridine, and zinc pyrithione (Amog Consulting, 2002). Irgarol 1051 is active against macroalgae, wherease chlorothalonil shows more broad-spectrum activity. Biodegradability can also vary considerably, ranging from readily biodegradable (Sea-Nine 211) to non-biodegradable (diuron and Irgarol 1051). Anaerobic half-lives of <0.5 days were calculated for chlorothalonil and dichlofluanid, between 14 and 35 days for diuron and over 226 days for Irgarol 1051 (Thomas et al., 2003), confirming the greater non-biodegradability of diuron and Irgarol 1051 relative to chlorothalonil and dichlofluanid. Therefore, the release of booster biocides associated with paint particles into marinas has the potential to lead to their accumulation unless activities such as hull cleaning are strictly regulated.

Although TBT still exceeds risk quotients by the greatest margins in environmental risk assessment of biological effects in the United Kingdom, widespread effects due to Irgarol 1051 and less so diuron cannot be ruled out, particularly if use patterns change (Thomas et al., 2001). Khandeparker et al. (2005) reported that the larval development and post-settlement metamorphosis of the barnacle *Balanus albicostatus* Pilsbry (Crustacea: Cirripedia) and the larval metamorphosis of a serpulid polychaete, *Pomatoleios kraussii* Baird was affected when exposed to Irgarol 1051, due to the promotory biofilms becoming toxic. Similarly, exposure of tropical seagrasses to diuron resulted in photosynthetic stress and a decline in the effective quantum yield within hours of exposure in *Cymodocea serrulata*, *Halophila ovalis* and *Zostera capricorni* (Haynes et al., 2000b). It is therefore likely that adverse biological effects from the use of organic booster biocides in antifoul paints may also be present in areas of high recreational boating activity in the Hawkesbury River system.

The availability of booster biocide compounds in registered antifoulant products available in Australia is summarized in Table 6. It should be noted that the summary is considered to be neither complete nor exhaustive, and that is intended to provide only a general indication of the prevalence of organic booster biocides in antifoul products in Australia.

Organic booster biocides are not routinely assessed in environmental media in Australia, although some studies have been conducted in Australia (Konstantinou and Albanis, 2004 and references therein). Given the relative scarcity of data and analytical costs and uncertainties, an assessment of organic booster biocides necessarily required a compromise approach both in terms of the number of sample locations and the number of analytes to be assessed. It was decided that diuron and Irgarol 1051 should be included in the suite of organic booster biocide analytes due to their relative non-biodegradability (Amog Consulting, 2002). Although Irgarol 1051 is not registered with the National Registration Authority (NRA) in Australia (Amog Consulting, 2002), precluding its use in marine and other products, the presence of this compound in sediments would indicate that contributions from overseas vessels may be responsible. In addition, dichlofluanid and chlorothalonil were considered to be of value in the assessment of sediments at some locations in the Hawkesbury River system because these compounds are present in registered antifoul products in Australia (Table 6). Information on these four booster biocide compounds has been summarized below and is based on the information provided in Amog Consulting (2002):

4.4.1 Irgarol 1051

Irgarol 1051® (Ciba-Geigy) (2-methylthio-4-t-butylamino-6-cyclopropylamino-s-triazine) is an agricultural herbicide that is highly effective against freshwater and marine algae (Amog Consulting, 2002). It belongs to the *s*-triazine group of compounds that act as photosystem-II inhibitors, by inhibiting photosynthetic

Prepared for Hornsby Shire Council, 20 September 2007 J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc =

Discussion

electron capture transport in chloroplasts (Dahl & Blanck, 1996; Voulvoulis et al., 1999). Irgarol is primarily used as a booster biocide to improve a coating's resistance to slime and algae.

Readman (1996) expressed concerns, and raised the question as to whether coastal ecosystems were at risk from Irgarol. Irgarol has now been detected in marine and estuarine water and sediment samples from areas associated with boating activity in the United Kingdom (Gough et al., 1994; Scarlett et al. 1997; Thomas et al., 2001), France (Tolosa et al., 1996), Spain (Martinez et al., 2001), Germany (Biselli et al., 2000), Japan (Liu et al., 1999), Bermuda (Connelly et al., 2001) and Australia (Scarlett et al., 1999).

The highest levels detected in water at Plymouth Sound, UK, (>120 ng/L) significantly inhibited the growth of Enteromorpha spores under laboratory conditions and the no effect concentration on photosynthetic activity in adult Enteromorpha fronds was 22 ng/L (Scarlett et al., 1997). Available data suggests that Irgarol is more toxic to algae than other trophic levels, and can inhibit algal growth at concentrations between 10 and 100μ g/L (Rogers et al., 1996). A probabilistic risk assessment of the use of Irgarol indicated low ecological risk in estuaries, coastal areas and various open-type marinas (Hall et al., 1999). Irgarol is not readily degraded in seawater (Callow & Willingham, 1996). White rot fungus, *Phanerochaete chrysosporium*, appears to biotransform Irgarol, but does not cleave the heterocyclic ring, suggesting that degradation products may accumulate in the environment (Liu et al., 1997; Voulvoulis et al., 1999).

A number of countries have recently imposed restrictions on the use of Irgarol as an antifouling biocide because of its persistence in the marine environment. Irgarol has been considered, but not approved, by the National Registration Authority (NRA) for use as an antifouling biocide in Australia (Amog Consulting, 2002).

4.4.2 Diuron

Diuron (dichlorophenyl dimethylurea) inhibits photosynthesis and is one of the major urea herbicides used in agriculture since the 1950s for weed control in no-crop areas (Amog Consulting, 2002). In the UK, where data are available, it was estimated that 45-52% of recreational craft were painted with antifoulings containing diuron (Boxall et al., 2000). On the Mediterranean coast of Spain, diuron, together with Irgarol 1051, was the most ubiquitous antifouling biocide detected. It was found in every marina and harbour sampled (Martinez et al., 2001). Diuron has not been found to be readily degraded in seawater (Callow & Willingham, 1996). In the United Kingdom, diuron and Irgarol 1051 were found in water samples from areas of high yachting activity and diuron was measured at the highest concentrations (Thomas et al., 2001). In a survey of sediments, diuron was detected in samples at one site, a marina in Southampton Water (Thomas et al., 2000). Its presence was thought to be associated with paint chippings, emphasising the importance of environmental management of shore-side practices.

Concentrations of diuron measured in sediments on the Queensland coast are considered sufficiently high to result in ecosystem impacts (Haynes et al., 2000a,b). However, this contamination was attributed to the widespread use of diuron as a herbicide by the sugarcane industry rather than use in antifouling paints. In the marine environment, diuron can inhibit photosynthesis and growth in periphyton, phytoplankton and seagrasses (Molander et al., 1992; Mayer, 1987; Ralph, 2000; Haynes et al., 2000b). Diuron concentrations in sediments in the United Kingdom have been reported to be as high as 395 μ g/kg at a marina in Orwell (Boxall et al., 2000) and 1,420 μ g/kg at the end of the boating season in Southampton water (Thomas et al., 2000).

4.4.3 Chlorothalonil

Chlorothalonil (2,4,5,6-tetrachloroiso-phthalonitrile) also known as Nopcocide N-96® (Henkel), is used in agriculture as a fungicide and in paints and adhesives as a preservative. It is highly toxic to fish and aquatic invertebrates, but not phytotoxic (Caux et al., 1996). A study of the degradation of chlorothalonil in

Prepared for Hornsby Shire Council, 20 September 2007 J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Discussion

seawater found degradation to become apparent after four weeks and to proceed more rapidly in seawater supplemented with cultured marine bacteria (Callow & Willingham, 1996).

High concentrations of chlorothalonil were measured in water and sediment in the Blackwater estuary in the UK, but the cause appeared more likely to be agricultural run-off than to its use in antifouling paints (Voulvoulis et al., 2000). In 2000, the UK Advisory Committee on Pesticides recommended that all amateur uses of antifouling products containing chlorothalonil should be revoked because information on humans indicated that the risk of skin sensitisation in humans was unacceptable (Advisory Committee on Pesticides, 2000). There is currently no available information on the restrictions of the use of chlorothalonil in non-agricultural industries in Australia.

4.4.4 Dichlofluanid

Dichlofluanid (N-dimethyl-N-phenylsulphamide) is used as an agricultural fungicide (Amog Consulting, 2002). In the United Kingdom, 38 approved antifouling products contain dichlofluanid (Health & Safety Executive, 2001). Dichlofluanid was present in only 0.6% of antifouling paint sold by chandlers surveyed in a UK study, but was nevertheless detected in relatively high concentrations at several localities in the region after a boating season (Voulvoulis et al., 2000). Dichlofluanid has also been detected in marina waters in Spain (Martinez et al., 2001). Dichlofluanid is much less soluble in water than both Irgarol 1051 and diuron, which may allow it to become associated with particulate matter and thus have the potential to bioaccumulate. Thomas et al. (2000) also comment that although dichlofluanid has been used extensively on various crops, very little is known about its environmental fate and effects. There is currently no available information on the environmental fate and effects of dichlofluanid in Australia and further research in this field is necessary.

4.4.5 Organic Booster Biocides in Sediments in the Hawkesbury River System

The concentrations of paint booster biocide compounds dichlofluanid, Irgarol 1051, diuron, and chlorothalonil were below the specified analytical limit of reporting (<100 μ g/kg) in all four sediment samples, which makes a determination of the presence of these compounds in sediments of the Lower Hawkesbury River system inconclusive. Although the analytical detection limits of these compounds in the international scientific literature in both water and sediments are routinely reported in the low μ g/kg range (1-10 μ g/kg), the quantitative analytical determination of these compounds is not routinely performed by any of the major commercial and NATA-accredited laboratories in Australia.

However, the analysis of the detailed mass spectrometry data from the analyses provided a more sensitive analytical limit of reporting, which resulted in the detection of diuron in three of the four samples, namely 30 μ g/kg (40 μ g/kg), 9 μ g/kg and 10 μ g/kg in sediment from locations H9 (QC5), H37, and H38, respectively (no evidence of diuron in sample H31 from Refuge Bay).

Based on the chemical data reported in the international scientific literature, booster biocide concentrations of >100 μ g/kg in sediments have been reported previously for Irgarol 1051 (<1-1,011 μ g/kg) (Boxall et al., 2000; Konstantinou and Albanis, 2004), diuron (<0.4-1,420 μ g/kg) (Thomas et al., 2000), dichlofluanid (<1.6-688.2 μ g/kg) (Voulvoulis et al., 2000), and chlorothalonil (16-165 μ g/kg) (Albanis et al., 2002). The absence of Irgarol 1051, dichlofluanid, and chlorothalonil in Hawkesbury River sediments at concentrations of 100 μ g/kg and below is not an indication of the absence of these compounds, although it suggests that if these compounds are present, the concentrations are likely to be below the maximum concentrations found in European ports and marina sediments. Irgarol 1051 is not legally registered in any antifoul compounds in Australia but it has previously been detected in water and sediments on the Queensland coast (Konstantinou, 2004 and references therein), which justifies the inclusion of this compound in the current investigation.

Discussion

The concentrations of these four booster biocide compounds have also been previously determined in waters from marinas and coastal ports in Europe, with ranges for Irgarol 1051 (< $0.001-4.2 \mu g/l$) (Basheer et al., 1993), diuron (< $0.001-6.74 \mu g/l$) (Thomas et al., 2001), dichlofluanid (< $0.004-0.6 \mu g/l$) (Martinez et al., 2000), and chlorothalonil (< $0.01-1.38 \mu g/l$) (Voulvoulis et al., 2000).

At present, no reliable data on the solid phase-dissolved phase partitioning of booster biocides exists. It is therefore difficult to determine if the generally observed lower concentrations in waters in comparison with sediments have to do with the booster biocide compounds' preference towards sorptive partitioning. Gough et al. (1994) have also observed even lower concentrations of Irgarol 1051 in sediments in the Humble Estuary, UK, suggesting that partitioning onto settled or suspended particulate matter may prove to be a critical process in determining the compounds fate in the aquatic environment.

Diuron

Diuron is the most common (in Australia – Table 6) of the four booster biocide compounds assessed in the current investigation, which makes its presence in sediments at concentrations of approximately 9 μ g/kg to 40 μ g/kg unsurprising. In contrast, dichlofluanid and chlorothalonil are registered in only one antifoul product in Australia and Irgarol 1051 is not legally registered in any antifoul compounds, which corresponds to the absence of these compounds in sediments at these four locations in the Hawkesbury River system. It should be noted that diuron is no longer approved for use in the UK as an active ingredient in antifouling paints, on any size of vessel, due to its demonstrated toxicity (Konstantinou and Albanis, 2002).

Diuron also inhibits photosynthesis and was found to have similar toxicity with Irgarol 1051 using *D. magna*, Zostera caprocorni seagrass, sea urchin eggs, and embryos and suspension cultured fish cells in various bioassays (Fernández-Alba et al., 2002; Kobayashi and Okamura, 2002; Okamura et al., 2002; Macinnis-Ng and Ralph, 2003). For diuron a maximum permissible concentration of 430 ng/l has been derived by Dutch authorities (Lamore et al., 2002).

For *D. magna* toxicity assay, the toxicity order of compounds was Sea-nine 211 (not assessed in the current study) > chlorothalonil > TCMTB (not assessed in the current study) > dichlofluanid > Irgarol 1051 > diuron (Konstantinou and Albanis, 2002). This toxicity order confirms the comparatively low toxicity of diuron relative to other booster biocide compounds. However, diuron is reported to be relatively persistent in seawater (Callow and Willingham, 1996) and considerably stable to hydrolysis and sunlight irradiation (Okamura, 2002). Due to the relatively high solubility of diuron in water (35 mg/l), it is suggested that diuron is predominantly found in the dissolved phase and only weakly sorbed to sediments. Voulvoulis et al. (2002) has found that diuron exhibited the least preference for sorptive behaviour between Irgarol 1051, chlorothalonil, and dichlofluanid. Therefore, the presence of diuron in sediments at three locations in the lower Hawkesbury River system at concentrations of up to 40 μ g/kg suggests that this compound is also substantially more likely to be present in water relative to Irgarol 1051, chlorothalonil, and dichlofluanid.

Diuron concentrations are greater than the concentrations of TBT in corresponding samples at sampling locations H9 (Berowra Creek marina) and H38 (Sandbrook Inlet), but similar at sampling location H37 (Hawkesbury River marina). In contrast, diuron was not detected at sampling location H31 (Refuge Bay), where the concentration of TBT was also low ($1.4 \mu gSn/kg$) (Figure 4 and Table 7).

The low concentrations of both diuron and TBT in sediments in Refuge Bay (H31) confirm that the sediments at that location are uncontaminated, which is most likely due to the absence of marinas and only temporary mooring for small recreational vessels in the Bay. In contrast, the higher TBT concentrations of up to 10.4 μ gSn/kg and diuron concentrations of up to 40 μ g/kg at the other three locations corresponds to the substantially higher boating activity at marinas in upper Berowra Creek, Sandbrook Inlet and Brooklyn Harbour. The diuron concentrations of 9-40 μ g/kg in sediments in the lower

Discussion

Hawkesbury River are generally lower compared to concentrations in sediments at marinas and in estuaries in the United Kingdom (e.g. Orwell marina - <12-395 μ g/kg (Boxall et al., 2000); Southampton Water - <100-1,420 μ g/kg (Thomas et al., 2000)) and Spain (e.g. Ebre Delta ports - <0.4-100 μ g/kg (Martinez and Barceló, 2001)).

4.5 Contaminants in Sediments at Proposed STP Site

The concentration ranges of inorganic analytes in sediments at three sampling locations in the vicinity of the STP are summarized in Section 3.2. The concentrations of inorganic analytes arsenic, cadmium, chromium, copper, lead, nickel, and zinc are below the ISQG-L (Trigger Level) of the (ANZECC/ARMCANZ (2000) sediment quality guidelines in sediments from all three sampling locations. However, the concentration of mercury in sediment at sampling location H40 (0.2 mg/kg) exceeds the ISQG-L value for mercury of 0.15 mg/kg.

All organic contaminants (polychlorinated biphenyls, organochlorine pesticides, organophosphorus pesticides, polynuclear aromatic hydrocarbons, total petroleum hydrocarbons and BTEX) in sediments from sample locations H40, H41 and H42 were below the standard limits of reporting.

The analytical results confirm that the concentrations of inorganic analytes in sediments at the three sampling locations in the vicinity of the proposed STP site are low, and similar to the concentrations in sediments in the main Hawkesbury River channel, as established in the Sediment Study (Stage 1) (Appendix A).

4.6 Silver Concentrations in Sediments in Berowra Creek

The concentrations of silver in surficial sediments at three locations in Berowra Creek (H3, H5, and H7) were determined to assess possible sewage and stormwater contributions to these sediments, based on elevated total organic carbon contents observed in Berowra Creek sediments during the Sediment Study (Stage 1) (Appendix A).

The low silver concentrations of <0.1mg/kg-0.2mg/kg and the small concentration range suggests that sewage particulate matter concentrations and stormwater contributions are unlikely to be linked to the elevated total organic carbon concentrations in the sediments in Berowra Creek. However, a more detailed assessment of the spatial distributions of silver and the vertical concentration gradients in sediments adjacent to stormwater discharge points in Berowra Creek would be required to provide a more conclusive outcome.

Conclusions

The Sediment Study (Stage 1) (Appendix A) has resulted in the following outcomes:

- Sediment texture is generally muddy (>80% mud) in deep waters of the creeks (Cowan Creek, Berowra Creek, Marramarra Creek, Mullet Creek, Mooney Mooney Creek) and sandier in the main Hawkesbury River channel and the headwaters of the major creeks;
- Normalized contaminant concentrations (using the lithogenic element aluminium) generally decrease from upper Berowra Creek and upper Cowan Creek towards the main Hawkesbury River channel, with locally elevated concentrations in the vicinity of marinas and areas of increased recreational boating activity. Normalized contaminant concentrations in sediments of Sandbrook Inlet (the Gut) are generally higher than in the main Hawkesbury River channel, where normalized contaminant concentrations are low from Wisemans Ferry to the confluence with Cowan Creek;
- Concentrations of inorganic contaminants (copper, lead, zinc, mercury, arsenic) exceed ANZECC/ARMCANZ (2000) sediment quality guideline values in sediments of upper Berowra Creek, Cowan Creek, Sandbrook Inlet (the Gut), mainly adjacent to marinas, and at some locations in the Hawkesbury River (southwest of Spectacle Island and south of Dangar Island). Nineteen of the 52 sampling locations exceed at least one sediment quality guideline value;
- Concentrations of organic compounds are below the limits of reporting in sediments at most sample locations and below ANZECC/ARMCANZ (2000) sediment quality guideline values where present above the limits of reporting. Total petroleum hydrocarbons are present at concentrations above the limits of reporting in sediments at Waratah Bay, Mooney Mooney Creek, Cowan Creek and Smiths Creek. Fluoranthene and Pyrene, were detected in sediments in Mooney Mooney Creek and at Bobbin Head marina and PCBs were detected in sediments at Bobbin Head marina; and
- Normalized concentrations of copper, chromium, lead and zinc are higher in upper Berowra Creek sediments in 2007 compared to 1998, possibly reflecting increased contaminant contributions to receiving waters from the upper Berowra Creek catchment. In contrast, total organic carbon contents in sediments are lower in upper Berowra Creek sediments when compared over the same 9 year period, which suggests that elevated contaminant concentrations in upper Berowra Creek sediments may be related to sources other than stormwater discharge.

The Antifoul Study (Stage 2) has resulted in the following outcomes:

- Concentrations of TBT (normalized to 1% TOC) in sediments exceed the ISQG-L (Trigger Value) of the ANZECC/ARMCANZ (2000) sediment quality guidelines (5 μgSn/kg) at four locations in the vicinity of marinas (i.e. Akuna Bay marina - H25 and H26; Bobbin Head marina - H21) and other points of high recreational boating activity (i.e. Cowan Creek – Cottage Point - H28);
- The occurrence of TBT in the Hawkesbury River estuary system is widespread, albeit at low concentrations in areas other than in close proximity to marinas. Concentrations of >1.4 μgSn/kg in sediments were found at each of the 16 locations assessed in the current study, including locations remote from marinas (i.e. Calabash Bay, Refuge Bay, and Smiths Creek);
- TBT concentrations in sediments at marinas and in areas of high recreational boating activity in the lower Hawkesbury River system are substantially lower compared to many other harbours and coastal areas worldwide, indicating that antifoul-related contamination is comparatively minor and localized to areas of known boating activity;
- Concentrations of organic compounds in surifical sediments are generally below the analytical limits
 of reporting (i.e. TPH, OP pesticides, BTEX, OC pesticides (except for DDE at four sampling
 locations), and PCBs (except for Aroclor 1254 at two locations)). However, PAH compounds are
 generally ubiquitous in sediments in the lower Hawkesbury/Nepean River system and the
 concentrations of most PAH compounds quantified in this investigation are generally above the
 analytical limits of reporting at all sampling locations and likely to be at least partially due to natural
 PAH contributions from burnt organic matter generated during bushfires;

Conclusions

- Organic paint booster biocides Irgarol 1051, chlorothalonil and dichlofluanid have not been detected in sediments in the lower Hawkesbury River system at concentrations at or above 0.1 mg/kg. However, the presence of diuron at concentrations between 0.009 mg/kg and 0.04 mg/kg at three locations (Berowra Waters marina, Brooklyn Harbour, Sandbrook Inlet) suggests that these compounds (and other antifoul compounds not assessed in the current investigation, e.g. zinc pyrithione, thiram) may be present at lower concentrations;
- Sediments in the vicinity of the proposed Sewage Treatment Plant discharge point at the Peats Ferry road bridge have shown to be uncontaminated, except for an exceedance of the ISQG-L (Trigger Level) for mercury at one location (H40), which may be due to road runoff in the vicinity of that location. Contaminant concentrations at these locations are similar to the levels found in other parts of the main Hawkesbury River channel; and
- Concentrations of silver in surficial sediments in lower Berowra Creek are low (<0.1mg/kg-0.2mg/kg), suggesting that the high total organic carbon concentrations in sediments in Berowra Creek are unlikely to be associated with stormwater and sewage discharges.

Recommendations

6.1 Recommendations

The Sediment and Antifoul Study (Hornsby Shire Council Project Q27/2006) has resulted in important findings, as summarized in Section 5. Additional assessments may be considered by Hornsby Shire Council in the ongoing environmental management of the waterways of the Lower Hawkesbury River estuary. In particular, the following issues may be considered further:

1. Elevated concentrations of TBT in sediments at several sampling locations in the Hawkesbury River system indicate that there is a residual environmental effect, even 18 years after the ban on TBT-based antifoulants. This confirms the assessment by Gibson and Wilson (2003) who established that imposex phenomena in gastropods were still evident in eastern Australia 10 years after the implementation of TBT restrictions. Additional data is needed to ascertain the vertical extent and variability of TBT concentrations in sediments at locations where the surficial sediment concentrations (<10 cm depth) exceed the ISQG-L (Trigger value) of 5 μgSn/kg (ANZECC/ARMCANZ (2000). These locations are H8, H9, and H10 (upper Berowra Creek), H21 and H22 (upper Cowan Creek), H25 and H26 (Akuna Bay marina in Coal and Candle Creek), H28 (Cottage Point) and H37 (Hawkesbury River marina). Vertical contaminant concentration profiles (TBT, heavy metals and organic compounds) are likely to establish the thickness of contaminated sediments, which may have direct implications for future management of sediments at these locations, including maintenance dredging, trawling, relocations of moorings, and other types of sediment disturbances.

2. The abundance and spatial distribution of organic booster biocides in antifouling paints, such as Irgarol 1051, diuron, dichlofluanid, and chlorothalonil (and other booster biocide compounds that were not assessed in the current investigation, such as zinc pyrithione and thiram) near marinas and other areas of high recreational boating activity in the Hawkesbury River system, has not been satisfactorily resolved. Due to the well-known toxicity of these TBT-replacement antifoulants, the demonstrated presence of diuron, and the likelihood of the presence of other booster biocide compounds, aquatic biota in the vicinity of these areas may be adversely affected. It may be possible that toxicity effects to aquatic biota in the vicinity of marinas that are not due to the presence of elevated concentrations of TBT, heavy metals or other commonly analysed organic compounds (i.e. PAHs, PCBs, OC pesticides), are the result of the presence of organic booster biocides in water and sediments. However, this link has not been established in the current investigation and would require additional assessments that identify these compounds and quantify their concentrations in water and sediments in the Hawkesbury River system. A hierarchical assessment, culminating in the determination of ecological risk of these compounds to the environment in the Hawkesbury River system may be warranted, based on the demonstrated prevalence of environmental effects in other areas of intense boating activity throughout the world.

Additional assessments would require substantially lower analytical limits of reporting (0.001 mg/kg in sediments and 0.001 μ g/l in water) to allow direct comparisons with results from other studies worldwide and assess the potential ecological implications of the presence of organic booster biocides in environmental media in the Hawkesbury River system. Zinc pyrithione and thiram, which are both registered compounds in Australia, but which have not been assessed in the current investigation may also be included in future environmental assessments of marinas in the Hawkesbury River system.

3. The concentrations of contaminants in sediments at the proposed STP site at the Hawkesbury River road bridge are low, with the exception of mercury (0.2mg/kg) at one location (H40) (possibly due to road runoff), and generally similar to the concentrations of contaminants in the main Hawkesbury River channel. It is recommended to obtain additional sediment grab samples at these sampling locations (H40, H41 and H42), following the commissioning of the STP, at various time-points (e.g. 3 months, 6 months and 12 months post-commissioning) and analyse these samples for an identical suite of contaminants compared to the current investigation. This post-commissioning monitoring programme would allow an assessment of possible contaminant accumulation in sediments in the vicinity of the STP diffusers, as a

Recommendations

result of particulate matter contributions from the STP discharge. However, based on the findings of the current investigation it is unlikely that fine particulate matter from the STP discharge would accumulate in the vicinity of the Hawkesbury River road bridge because of the high energy environment prevalent in the centre of the Hawkesbury River channel. Large tidal movements and high velocity currents in the main river channel has resulted in generally sandy substrate with abundant shells and corals and few fine particulates.

4. The presence of high total organic carbon contents in excess of 12% in sediments in lower Berowra Creek downstream of Calabash Bay (H3 to H7) is unlikely to be due to organic-rich contributions of particulate matter from sewage or stormwater discharges, because the concentrations of contaminants, in particular heavy metals, in these sediments are generally low. Concentrations of silver in surficial sediments in lower Berowra Creek have shown to be at or below the analytical limit of reporting (0.1mg/kg), which suggests that the elevated TOC contents in these sediments may be the result of natural organic matter contributions from the surrounding National Park. However, the source of the organic carbon and a confirmation of its natural origin would require additional sampling and analysis of sediments in the vicinity of known stormwater discharge points in Berowra Creek, to establish if there is a spatial gradient in the TOC content in surficial sediments and a decrease in TOC content with distance from the inferred discharge source.

5. The bioavailability of TBT and other inorganic and organic contaminants in sediments in the vicinity of known point sources (i.e. marinas) and the potential effects on aquatic biota are currently poorly understood in the Lower Hawkesbury River estuary. Further research into the ecotoxicological effects of bioavailable contaminant sources near marinas would therefore provide additional information and maximize the efficiency of estuary management of the Lower Hawkesbury River.

6. Analytical procedures for the quantification of booster biocide compounds in sediments need to be further developed before a more detailed spatial assessment of the distribution of these compounds in sediments of the Lower Hawkesbury River estuary can be undertaken.

7. A compilation of the usage profiles and availability of booster biocide compounds in registered antifoulant products available in Australia may provide further information about the likelihood of these compounds to be present in sediments and water near marinas and other areas of high commercial and recreational boating within the Lower Hawkesbury River estuary.

8. Long-term monitoring in high priority oyster lease areas via sampling and analysis of sediments for inorganic and organic contaminants may be necessary to ascertain that contaminants do not accumulate in these areas over time.

References

Advisory Committee on Pesticides. (2000). Minutes of the 278th meeting of the Advisory Committee on Pesticides (ACP) on 7th September 2000. Pesticides Safety Directorate, UK. 12 pp.

Albanis, T., Lambropoulou, D., Sakkas, V., and Konstantinou, I. (2002). Antifouling paint booster biocide contamination in Greek marine sediments. *Chemosphere*, **48**, 475-485.

Amog Consulting (2002). Hull Fouling as a vector for the translocation of marine organisms. Phase 3 – the significance of the prospective ban on tributyltin antifouling paints on the introduction & translocation of marine pests in Australia. Report No. 2 to Department of Agriculture, Fisheries and Forestry, Australia, April 2002.

ANZECC/ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand, October 2000.

Axiak, V., Micallef, D., Muscat, J., Vella, A. and Mintoff, B. (2003). Imposex as a biomonitoring tool for marine pollution by tributyltin: some further observations. *Environment International*, **28**, 743-749.

Barnes, R.K., Batley, G.E. and Sharp, J.H (1982). Heavy metal enrichment in the surface microlayer of the Nepean-Hawkesbury river system. *Australian Journal of Marine and Freshwater Research*, **33**, 917-930.

Basheer, C., Tan, K., and Lee, H. (1993). Organotin and Irgarol 1051 contamination in Singapore coastal waters. *Marine Pollution Bulletin*, **44**, 697-703.

Birch, G.F., Shotter, N. and Steetsel, P. (1998). The environmental status of Hawkesbury River sediments. *Australian Geographical Studies*, **36**, 37-57.

Birch, G.F., Eyre, B.D. and Taylor, S.E. (1999). The use of environmental impact on a large coastal catchment – the Hawkesbury River system. *AGSO Journal of Australian Geology & Geophysics*, **17**, 175-191.

Blaber, S.J.M. (1970). The occurrence of a penis-like outgrowth behind the right tentacle in spent females of *Nucella lapillus* (L.). *Proceedings of the Malacological Society of London*, **39**, 231-233.

Biselli, S., Bester, K., Hühnerfuss, H. and Fent, K. (2000). Concentrations of the antifouling compound Irgarol 1051 and of organotins in water and sediments of German North and Baltic Sea marinas. *Marine Pollution Bulletin*, **40**, 233-243.

Bourgues, S., Carpenter, M., Coade, G., Scanes, P. and Koop, K. (1998). Oxygen and nutrient fluxes quantified under experimental conditions on sediment from deep and shallow sites in Berowra Creek. Environmental Protection Authority NSW.

Boxall, A., Comber, S., Conrad, A., Howcraft, J. and Zaman, N. (2000). Inputs, monitoring and fate modelling of antifouling biocides in UK estuaries. *Marine Pollution Bulletin*, **40**, 898-905.

Callow, M. and Willingham, G. (1996). Degradation of antifouling biocides. *Biofouling*, **10**, 239-250.

Caux, P., Kent, R., Fan, G. and Stephenson, G. (1996). Environmental fate and effects of chlorothalonil: a Canadian perspective. *Critical Reviews in Environmental Science and Technology*, **26**, 45-93.

Prepared for Hornsby Shire Council, 20 September 2007 J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

References

Coastal & Marine Geosciences (1998). Berowra Creek Estuary Process Study Technical Report : Sediment characteristics and processes. Coastal & Marine Geosciences Geological and Environmental Consultant, Sydney.

Connelly, D., Readman, J., Knaps, A. and Davies, J. (2001). Contamination of the coastal waters of Bermuda by organotins and the triazine herbicide Irgarol 1051. Marine Pollution Bulletin, 42, 409-414 Dahl, B. and Blanck, H. (1996). Toxic effects of the antifouling agent Irgarol 1051 on periphyton communities in coastal water microcosms. Marine Pollution Bulletin, 32, 342-350.

Dames and Moore (1999). Brooklyn Harbour Dredging and Reclamation – Options Discussion Paper. Report prepared for Hornsby Shire Council.

De Mora, S., Stewart, C., and Phillips, D. (1995). Sources and rate of degradation of tri(n-butyl)tin in marine sediments near Auckland, New Zealand. Marine Pollution Bulletin, 30, 50-57.

Dowson, P.H., Bubb, J.M. and Lester, J.N. (1992). Organotin distribution in sediments and waters of selected east coast estuaries in the UK. Marine Pollution Bulletin, 24, 492-498.

EPA (1996). A baseline contaminant survey of the Hawkesbury River Estuary: December 1990-January 1991. New South Wales Environment Protection Authority, EPA Report No. 94/24.

Evans, S.M., Birchenough, A.C. and Brancato, M.S. (2000). The TBT ban: out of the frying pan into the fire? Marine Pollution Bulletin, 40, 204-211.

Fent, K. (1996). Ecotoxicology of organotin compounds. Critical Reviews in Toxicology, 26, 1-117.

Fernández-Alba, A., Hernado, M., Piedra, L., and Chisti, Y. (2002). Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Analytica Chimica Acta, 456, 303-312.

Gabrielides, G., Alzieu, C., Readman, J., Bacci, E., Aboul Dahab, O., and Salihoglu, I. (1990). MED POL survey of organotins in the Mediterranean. Marine Pollution Bulletin, 21, 233-237.

Gibson, C.P. and Wilson, S.P. (2003). Imposex still evident in eastern Australia 10 years after tributyltin restrictions. Marine Environmental Research, 55, 101-112.

Gough, M.A., Fothergill, J. and Hendrie, J.D. (1994). A survey of Southern England coastal waters for the s-triazine antifouling compound Irgarol 1051. Marine Pollution Bulletin, 28, 613-620.

Hagger, J.A., Depledge, M.H. and Galloway, T.S. (2005). Toxicity of tributyltin in the marine mollusc Mytilus edulis. Marine Pollution Bulletin. 51, 811-816.

Hall, L., Jr., Giddings, J., Solomon, K. and Balcomb, R. (1999). An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifouling paints. Critical Reviews in Toxicology, 29, 367-437.

Hardiman, S. and Pearson, B. (1995). Heavy metals, TBT and DDT in the Sydney Rock Oyster (Saccostrea commercialis) sampled from the Hawkesbury River estuary, NSW, Australia. Marine Pollution Bulletin, 30, 563-567.

Hayes, W.J. and Buckney, R.T. (1998). Chemical characteristics of sediments and interstitial waters in some small Hawkesbury Sandstone freshwater streams of the Sydney area. Lakes & Reservoirs: Research and Management, 3, 165-178.

J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report/Antifoul Study Final Report R001.doc

References

Haynes, D., Müller, J. and Carter, S. (2000a). Pesticide and herbicide residues in sediments and seagrasses from the Great Barrier Reef World Hertiage Area and the Queensland coast. *Marine Pollution Bulletin*, **41**, 279-287.

Haynes, D., Ralph, P., Prange, J. and Dennison, B. (2000b). The impact of the herbicide diuron on photosynthesis in three species of tropical seagrass. *Marine Pollution Bulletin*, **41**, 288-293.

Health and Safety Executive (2001). HSE Registered Products: Antifouling products. In: Pesticides Safety Directorate, Pesticides 2001. HMS, London, UK. pp. 327-374.

Hasan, M. and Juma, H. (1992). Assessment of tributyltin in the marine environment of Bahrain, *Marine Pollution Bulletin*, **24**, 408-410.

Jones, M., Stauber, J., Apte, S., Simpson, S., Vicente-Beckett, V., Johnson, R., and Duivenvoorden, L. (2005). A risk assessment approach to contaminants in Port Curtis, Queensland, Australia. *Marine Pollution Bulletin*, **51**, 448-458.

Kan-Atireklap, S., Tanabe, S., and Sanguansin, J. (1997). Contamination by butyltin compounds in sediments from Thailand. *Marine Pollution Bulletin*, **34**, 894-899.

Khandeparker, L., Desai, D. and Shirayama, Y. (2005). Larval development and post-settlement metamorphosis of the barnacle *Blanus albicostatus* Pilsbry and the serpulid polychaete *Pomatoleios kraussii* Baird: Impact of a commonly used antifouling biocide, Irgarol 1051. *Biofouling*, **21**, 169-180.

Ko, M.M.C., Bradley, G., Neller, A., and Broom, M. (1995). Tributyltin contamination of marine sediments of Hong Kong. *Marine Pollution Bulletin*, **31**, 249-253.

Kobayashi, N. and Okamura, H. (2002). Effects of new antifouling compounds on the development of sea urchin. *Marine Pollution Bulletin*, **44**, 748-751.

Konstantinou, I.J. and Albanis, T.A. (2004). Worldwide occurrence of antfouling paint booster biocides in the aquatic environment: a review. *Environment International*, **30**, 235-248.

Lamore, M., Swart, S, van der Horst, A., and van Hattum, B. (2002). Determination of diuron and the antifouling paint biocide Irgarol 1051 in Dutch marinas and coastal waters. *Journal of Chromatography Annals*, **970**, 183-190.

Liu, D., Pacepavicius, G.J., Maguire, R.J., Lau, Y.L., Okamura, H. and Aoyama, I. (1999). Survey for the occurrence of the new antifouling compound Irgarol 1051 in the aquatic environment. *Water Research*, **33**, 2833-2843.

Macinnis-Ng, C.M.O. and Ralph, P. (2003). Short term response and recovery of *Zostera capricorni* photosynthesis after herbicide exposure. *Aquatic Botany*, **76**, 1-15.

Makita, Y. and Omura, M. (2006). Effects of perinatal combined exposure to 1,1-dichloro-2,2 bis (p-chlorophenyl) ethylene and tributyltin on male reproductive system. *Basic and Clinical Pharmacolog & Toxicology*, **99**, 128-132.

Mann, R.A., Jung, R.F. and Huang, B. (1996). Contaminants in sediments from Calabash Point, Berowra Creek. CSIRO Division Coal and Energy Technology, Investigation Report CET/IR510.

J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

References

Markich, S.J. and Brown, P.L. (1998). Relative importance of natural and anthropogenic influences on the fresh surface water chemistry of the Hawkesbury-Nepean River, south-eastern Australia. *Science of the Total Environment*, **217**, 201-230.

Martínez, K., Ferrer, I. and Barceló, D. (2000). Part-per-trillion level determination of antifouling pesticides and their byproducts in seawater samples by off-line solid-phase extraction followed by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. *Journal of Chromatography Annals*, **879**, 27-37.

Martínez, K., Ferrer, I., Hernando, M., Fernández-Alba, A., Marce, R., Borrull, F. and Barceló, D. (2001). Occurrence of antifouling biocides in the Spanish Mediterranean marine environment. *Environmental Technology*, **22**, 543-552.

Martínez, K. and Barceló, D. (2001). Determination of antifouling pesticides and their degradation products in marine sediments by jeans of ultrasonic extraction and HPLC-APCI-MS. *Fresenius' Journal of Analytical Chemistry*, **370**, 940-945.

Mayer, F. (1987). Acute toxicity handbook of chemicals to estuarine organisms. Report EPA/600/8-87/017. Gulf Breeze, Florida, Environmental Research Laboratory. [cited in Haynes *et al.*, 2000].

Molander, S., Dahl, B., Blanck, H., Jonsson, J. and Sjostrom, M. (1992). Combined effects of tri-n-butyl tin (TBT) and diuron on marine periphyton communities detected as pollution-induced community tolerance. *Archives of Environmental Contamination and Toxicology*, **22**, 419-427.

Martínez, K., Ferrer, I., Hernando, M., Fernández-Alba, A., Marce, R., Borrull, F. and Barceló, D. (2001). Occurrence of antifouling biocides in the Spanish Mediterranean marine environment. *Environmental Technology*, **22**, 543-552.

Miller, G. (1993). An environmental, geological and geochemical study of the Cowan Creek catchmentm N.S.W. Unpublished Honours thesis, University of New South Wales, 199 pp.

Moore, T. (1988). Government announces measures to implement ban on marine antifouling paints [Press release] (New South Wales Minister for the Environment), 22 December 1988, Sydney.

Negri, A., Hales, L., Battershill, C., Wolff, C. and Webster, N. (2004). TBT contamination identified in Antarctic marine sediments. *Marine Pollution Bulletin*, **48**, 1142-1144.

Okamura, H., Watanabe, T., Aoyama, I., and Hasobe, M. (2002). Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. *Chemosphere*, **46**, 945-951.

O'Donnell, M. (1995). Heavy metal contamination in the Hawkesbury River between Windsor and Wisemans Ferry. Unpubl. B.Sc. (Hons) thesis, Department of Geology and Geophysics, The University of Sydney, Sydney.

Parker, C. (1992). Heavy metals in the sediments of the Hawkesbury Valley: an assessment of the spatial and temporal distribution. Unpubl. B.Sc. (Hons) thesis, Department of Geography, The University of Sydney, Sydney.

Patterson Britton (2001). Brooklyn Boat Harbour Dredging and Reclamation Vibrocoring and Sediment Testing Exercise. Report prepared by Patterson Britton and Partners for Hornsby Shire Council.

J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

References

Patterson Britton (2003). Brooklyn Harbour Maintenance Dredging. Environmental Impact Statement prepared for Hornsby Shire Council by Patterson Britton and Partners, Issue No. 2, April 2003.

Pik, A.J., Eckert, J.M. and Williams, K.L. (1982). Speciation of iron, copper and zinc in the Hawkesbury River. *Australian Journal of Marine and Freshwater Research*, **33**, 971-977.

Ralph, P.J. (2000). Herbicide toxicity of *Halophila ovalis* assessed by chlorophyll *a* fluorescence. *Aquatic Botany*, **66**, 141-152.

Readman, J.W. (1996). Antifouling herbicides - a threat to the environment? *Marine Pollution Bulletin*, **32**, 320-321.

Rogers, H., Watts, C. and Johnson, I. (1996). Comparative predictions of Irgarol 1051 and atrazine fate and toxicity. *Environmental Technology*, **17**, 553-556.

Santos, M.M., Vieira, N., Reis-Henriques, M.A., Santos, A.M., Gomez-Ariza, J.L., Giradles, I. and ten Hallers-Tjabbes, C.C. (2004). Imposex and butyltin contamination off the Oporto COSAT (NW Portugal): a posible effect of the discharge of dredged material. *Environment International*, **30**, 793-798.

Sarradin, P.-M., Astruc, A., Sabrier, R., and Astruc, M. (1994). Survey of butyltin compounds in Arcachon Bay sediments. *Marine Pollution Bulletin*, **28**, 621-628.

Scarlett, A., Donkin, M.E., Fileman, T.W. and Donkin, P. (1997). Occurrence of the marine antifouling agent Irgarol 1051 within the Plymouth Sound locality: implications for the green macroalgae *Enteromorpha intestinalis. Marine Pollution Bulletin,* **34**, 645-651.

Scarlett, A., Donkin, P., Fileman, T. and Morris, R. (1999). Occurrence of the antifouling herbicide, Irgarol 1051, within coastal-water seagrasses from Queensland, Australia. *Marine Pollution Bulletin*, **38**, 687-691.

Shotter, N. (1994). Anthropogenic impacts on the central Hawkesbury River, part of a large NSW estuary. Unpubl. B.Sc. (Hons) thesis, Department of Geology and Geophysics, The University of Sydney, Sydney.

Simonovski, J., Owens, C. and Birch, G. (2003). Heavy metals in sediments of the Upper Hawkesbury-Nepean River. *Australian Geographical Studies*, **41**, 196-207.

Smith, B.S. (1981a). Reproductive anomalies in stenoglossan snails related to pollution from marinas. *Journal of Applied Toxicology*, **1**, 15-21.

Smith, B.S. (1981b). Male characteristics on female mud snails caused by antifouling bottom paints. *Journal of Applied Toxicology*, **1**, 22-25.

Smith, B.S. (1981c). Tributyltin compounds induced male characteristics on female mud snails *Nassarius obsoletus=Hyanassa obsoletus. Journal of Applied Toxicology*, **1**, 141-144.

SPCC (1988). State Pollution Control Commission, Assessment of organotin compounds, especially tributyltin compounds used as antifoulants, Sydney.

Taylor, S.E. (2000). The source and remobilisation of contaminated sediment in Port Jackson, Australia. Unpubl. PhD thesis, Department of Geology and Geophysics, The University of Sydney, Sydney

J:JOBS/43217595/Hornsby Shire Council - Sed & Antifoul Study/Deliverables/Sed & Antifoul Final Report/App B - Antifoul Study (Stage 2) - Report/Antifoul Study Final Report R001.doc

References

Thomas, K., Blake S. and Waldock, M. (2000). Antifouling paint booster biocide contamination in UK marine sediments. *Marine Pollution Bulletin*, **40**, 739-745.

Thomas, K.V., Fileman, T.W., Readman, J.W. and Waldock, M.J. (2001). Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects. *Marine Pollution Bulletin*, **42**, 677-688.

Thomas, K., McHugh, M., Hilton, M. and Waldock, M. (2003). Increased persistence of antifouling paint biocides when associated with paint particles. *Environmental Pollution*, **123**, 153-161.

Tolosa, I., Readman, J., Blaevot, A., Ghilini, S., Bartocci, J., and Hovat, M. (1996). Contamination of Mediterranean (Cote d'Azur) coastal waters by organotins and Irgarol 1051 usedin antifouling paints. *Marine Pollution Bulletin*, **32**, 335-341.

Uhler, A., Stout, S., McCarthy, K. and Emsbo-Mattingly, S. (2000). Tributyltin: a unique sediment Contaminant. Soil Sediment and Groundwater, June 2000.

University of New South Wales (UNSW) (2002). School of Civil Engineering, Water Research Laboratory, Brooklyn Estuaries Processes Study – Working Paper 3.

USEPA (2003). Ambient aquatic life water quality criteria for tributyltin (TBT) – final. United States U.S. Environmental Protection Agency, Office of Water Report 4304T, EPA 822-R-03-031, Washington, DC, USA, 138 pp.

Voulvoulis, N., Scrimshaw, M. and Lester, J. (1999). Alternative antifouling biocides. *Applications in Organometallic Chemistry*, **13**, 135-143.

Voulvoulis, N., Scrimshaw, M. and Lester, J. (2000). Occurrence of four biocides utilized in antifouling paints, as alternatives to organotin compounds, in waters and sediments of a commercial estuary in the UK. *Marine Pollution Bulletin*, **40**, 938-946.

Voulvoulis, N., Scrimshaw, M., and Lester, N. (2002). Partitioning of selected antifouling biocides in the aquatic environment. *Marine Environmental Research*, **53**, 1-16.

Limitations

URS Australia Pty Ltd (URS) has prepared this Final Report in accordance with the usual care and thoroughness of the consulting profession for the use of Hornsby Shire Council and only those third parties who have been authorised in writing by URS to rely on the Final Report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this Final Report. It is prepared in accordance with the Proposal dated 29 August 2006 and the Sampling and Analysis Plans for the Sediment Study (Stage 1) and Antifoul Study (Stage 2) (Appendices B and C).

The methodology adopted and sources of information used by URS are outlined in this Final Report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this Final Report as provided to URS was false.

This Final Report was prepared between 15 April and 20 September 2007 and is based on the conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This Final Report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This Final Report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Table 1. Antifoul Study (Stage 2) Sampling Locations

Sample ID	Location Description	Easting*	Northing*	Analytes
H7	Berowra Creek Calabash Bay	325530	6282107	TBT, PCBs, PAHs, OCPs, OPPs, Silver
H8	Berowra Creek east of Crossland Bay	325808	6281083	TBT, PCBs, PAHs, OCPs, OPPs
Н9	Berowra Creek at Marina	325771	6280706	TBT, PCBs, PAHs, OCPs, OPPs, diuron chlorothalonil, Irgarol 1051, and dichlofluanid
H10	Berowra Creek	325685	6280026	TBT, PCBs, PAHs, OCPs, OPPs
H17	Hawkesbury River Sandbrook Inlet West - at Marina	333320	6286561	TBT, PCBs, PAHs, OCPs, OPPs
H18	Hawkesbury River Sandbrook Inlet East	335098	6287024	TBT, PCBs, PAHs, OCPs, OPPs
H21	Cowan Creek Bobbin Head - at Marina	329680	6273756	TBT, PCBs, PAHs, OCPs, OPPs
H22	Cowan Creek Apple Tree Bay	328980	6274926	TBT, PCBs, PAHs, OCPs, OPPs
H23	Cowan Creek east of Waratah Bay	330452	6277834	TBT, PCBs, PAHs, OCPs, OPPs
H24	Cowan Creek Smiths Creek	332960	6277113	TBT, PCBs, PAHs, OCPs, OPPs
H25	Cowan Creek Akuna Bay - at Marina adjacent to slipway	336465	6275815	TBT, PCBs, PAHs, OCPs, OPPs
H26	Cowan Creek Akuna Bay - at Marina refueling station	336487	6276077	TBT, PCBs, PAHs, OCPs, OPPs
H28	Cowan Creek Cottage Point - adjacent to kiosk	333768	6278915	TBT, PCBs, PAHs, OCPs, OPPs
H31	Cowan Creek Refuge Bay	337481	6280993	TBT, PCBs, PAHs, OCPs, OPPs, diuron chlorothalonil, Irgarol 1051, and dichlofluanid
H37	Hawkesbury River Brooklyn Jetty - at Marina	335462	6286738	TBT, PCBs, PAHs, OCPs, OPPs, diuron chlorothalonil, Irgarol 1051, and dichlofluanid
H38	Hawkesbury River, Brooklyn Harbour at Hawkesbury River Marina	334339	6286858	TBT, PCBs, PAHs, OCPs, OPPs, diuron chlorothalonil, Irgarol 1051, and dichlofluanid
H3	Berowra Creek west of Berowra Point	327506	6287314	Silver
H5	Berowra Creek west of Bujwa Creek	326962	6283927	Silver
H40	Hawkesbury River northwest of Long Island (STP site)	333300	6287277	TKN, TOC, NOX, Ca, Mg, Be, Al, V, Cr, Mn, Fe, Co, Cu, Zn, As, Sr, Ni, Ba, Pb, Cd, PCBs, PAHs, OCPs, OPPs, TPHs, BTEX, grain size
H41	Hawkesbury River north of Kangaroo Point (STP site)	332885	6287343	TKN, TOC, NOX, Ca, Mg, Be, Al, V, Cr, Mn, Fe, Co, Cu, Zn, As, Sr, Ni, Ba, Pb, Cd, PCBs, PAHs, OCPs, OPPs, TPHs, BTEX, grain size
H42	Hawkesbury River west of Hawkesbury Road Bridge (STP site)	332557	6287461	TKN, TOC, NOX, Ca, Mg, Be, Al, V, Cr, Mn, Fe, Co, Cu, Zn, As, Sr, Ni, Ba, Pb, Cd, PCBs, PAHs, OCPs, OPPs, TPHs, BTEX, grain size

*Map Grid of Australia MGA94 (Zone 55)

Prepared for Hornsby Shire Council, 20 September 2007

J:\JOBS\43217595\Hornsby Shire Council - Sed & Antifoul Study\Deliverables\Sed & Antifoul Final Report\App B - Antifoul Study (Stage 2) - Report\Antifoul Study Final Report R001.doc

Table 2. Antifoul Study (Stage 2) Field Descriptions

Sample ID	Location Decription	Easting	Northing	Date Sampled	Time Sampled	Weather	Water Depth (m)	Sample Thickness (cm)	Gravel	Sand	Silt and Clay	Sediment Type	Colour	Additional Description
H7	Berowra Creek east of Calabash Bay at monitoring buoy	325527	6282093	26/03/2007	2.30pm	Cloudy	13.8	6	ND	ND	ND	Mud	Dark Olive	Black organic material in upper hydrous layer
H8	Berowra Creek east of Crossland Bay	325829	6281081	26/03/2007	2.45pm	Cloudy	7.6	8	ND	ND	ND	Mud	Dark Olive	Thin hydrous layer
H9	Berowra Creek at Marina	325729	6280693	26/03/2007	3.00pm	Cloudy/ Rain	7.4	10	ND	ND	ND	Mud	Dark Olive	Blck organic-rich surface layer, anoxic, slight H2S odour
H10	Berowra Creek	325690	6280066	26/03/2007	3.15pm	Cloudy	3.5	8	ND	ND	ND	Sandy Mud	Dark Olive	Strong H2S odour, anoxic, organic- rich
H17	Hawkesbury River Sanbrook Inlet West - at Marina	333325	6286538	26/03/2007	11.45am	Fine, sunny	1.9	8	ND	ND	ND	Muddy Sand	Olive-brown	
H18	Hawkesbury River Sanbrook Inlet East	335050	6287057	26/03/2007	11.15am	Fine, sunny	1.3	8	ND	ND	ND	Mud	Olive-brown	Trace sand
H21	Cowan Creek Bobbin Head - at Marina	329680	6273756	26/03/2007	6.45am	Fine	3.0	8	ND	ND	ND	Sandy Mud	Dark Olive	Some shells (bivalves) and twigs
H22	Cowan Creek Apple Tree Bay	329070	6274948	26/03/2007	7.15am	Fine	8.5	8	ND	ND	ND	Sandy Mud	Dark Olive	Some leaves
H23	Cowan Creek east of Waratah Bay	330467	6277909	26/03/2007	7.45am	Fine	22.8	10	ND	ND	ND	Mud	Dark Olive	Rugged surface
H24	Cowan Creek Smiths Creek	332950	6277136	26/03/2007	8.05am	Fine	22.0	10	ND	ND	ND	Mud	Dark Olive	Dark filamentous organic-rich material, burnt wood
H25	Cowan Creek Akuna Bay - at Marina adjacent to slipway	336464	6275822	26/03/2007	8.55am	Fine, sunny	8.9	6	ND	ND	ND	Muddy Sand	Dark Olive	Carbonate shell-rich
H26	Cowan Creek Akuna Bay - at Marina refueling station	336476	6276057	26/03/2007	8.45am	Fine, sunny	12.3	6	ND	ND	ND	Sandy Mud	Dark Olive	Some carbonate shells, white, flaky
H28	Cowan Creek Cottage Point - adjacent to kiosk	333713	6278954	26/03/2007	8.30am	Fine, sunny	12.0	7	ND	ND	ND	Muddy Sand	Olive	Worm tube holes at surface
H31	Cowan Creek Refuge Bay	337460	6280785	26/03/2007	9.20am	Fine, sunny	4.5	10	ND	ND	ND	Mud	Olive	Worm tubes
H37	Hawkesbury River, Brooklyn Channel at Hawkesbury River marina	335448	6286745	26/03/2007	10.10am	Fine, sunny	3.6	7	ND	ND	ND	Mud	Olive	Thin hydrous layer
H38	Hawkesbury River south of Sandbrook Inlet (centre)	334333	6286841	26/03/2007	11.30am	Sunny	1.6	8	ND	ND	ND	Mud	Olive-brown	2-3 cm long shrimp
H40	Hawkesbury River STP Site near bridge	333123	6287254	26/03/2007	12.15pm	Sunny	18.5	3	ND	ND	ND	Muddy Sand	Olive-brown	Shelly/bivalves (1-3 cm diameter), armoured bed
H41	Hawkesbury River STP Site	332771	6287434	26/03/2007	4.15pm	Cloudy	16.5	8	ND	ND	ND	Mud	Olive	Abundant shells and bivalves
H42	Hawkesbury River STP Site	332385	6287518	26/03/2007	12.40pm	Sunny	15.4	8	ND	ND	ND	Muddy Sand	Olive-brown	Shells, armoured bed
H3	Berowra Creek west of Berowra Point	327629	6287252	26/03/2007	1.45pm	Sunny	2.1	3	ND	ND	ND	Mud	Olive	Ag sample only
H5	Berowra Creek west of Bujwa Creek	326876	6284021	26/03/2007	2.15pm	Sunny	4.8	3	ND	ND	ND	Mud	Olive	Ag sample only

Table 3. Concentrations of PAHs (in μ g/kg) in Whole Sediments.

<10 20 <10 <10 20 20 20	<10 20 <10 <10	<10 20 <10	<10 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	.10	
<10 <10 20 20	<10	-	10	20					10	~10	<10	<10	<10	<10
<10 20 20		<10		20	30	20	10	10	<10	<10	<10	10	20	10
20 20	<10	.10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
20		<10	<10	30	10	<10	<10	<10	<10	10	<10	<10	10	<10
	30	20	20	60	60	40	20	10	<10	20	<10	10	50	30
	20	20	20	70	60	40	20	10	<10	60	<10	<10	60	30
70	70	60	140	600	160	130	50	30	20	480	30	40	210	170
100	100	90	180	630	250	200	90	50	20	560	40	50	230	210
120	130	120	250	760	310	250	100	60	20	460	40	60	470	240
70	80	70	120	440	180	140	60	40	10	220	30	40	170	140
40	40	40	50	430	90	70	70	40	20	220	30	40	140	160
80	100	90	130	310	200	160	60	40	20	230	20	30	160	150
80	80	80	160	610	200	210	60	40	20	460	30	40	450	200
<10	<10	<10	<10	20	20	20	20	20	<10	50	<10	10	40	50
10	<10	<10	20	50	30	20	10	<10	<10	50	<10	<10	40	40
140	160	140	280	1080	410	320	130	70	50	930	50	80	520	380
<10	<10	<10	<10	40	20	10	<10	<10	<10	10	<10	<10	20	10
30	30	30	50	430	70	60	60	40	10	210	20	30	110	120
) <100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
<10	70	40	50	50	50	<10	70	50	30	30	30	40	60	50
60	60	40	90	150	60	60	40	30	10	100	30	40	120	90
50	50	50	70	210	150	110	40	40	30	200	20	30	130	90
160	170	140	260	990	420	320	140	80	50	1000	60	90	540	370
135	210	150	200	420	290	180	170	120	65	235	85	115	340	225
560	585	515	1040	3960	1470	1200	480	275	165	3480	215	305	1990	1370
	$\begin{array}{c} <10\\ <10\\ 140\\ <10\\ <100\\ <100\\ <10\\ 60\\ 50\\ 160\\ 135\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

^aPre-dried analytical results

^bInitial analytical results

Table 4. Normalized (to 1% Total Organic Carbon) Concentrations of PAHs (in µg/kg) and TBT (in ngSn/g) in Whole Sediment and Sediment Quality Guideline Values (ANZECC/ARMCANZ (2000).

Analyte ^a	ISQG-L (ANZECC/ ARMCANZ (2000)*		H7	H8	H9	H10	H17	H18	H21	H22	H23	H24	H25	H26	H28	1181	H37	H38
3-Methylcholanthrene	na	na	1.5	1.2	1.1	0.9	1.8	2.0	0.7	1.0	1.4	1.3	2.4	1.2	2.6	2.2	1.6	1.9
2-Methylnaphthalene	70	670	6.1	4.8	4.2	3.7	3.7	7.9	4.4	3.9	2.8	2.6	2.4	1.2	2.6	4.3	6.2	3.9
7.12-Dimethylbenz(a)anthracene	na	na	1.5	1.2	1.1	0.9	1.8	2.0	0.7	1.0	1.4	1.3	2.4	1.2	2.6	2.2	1.6	1.9
Acenaphthene	16	500	1.5	1.2	1.1	0.9	1.8	12	1.5	1.0	1.4	1.3	2.4	2.4	2.6	2.2	3.1	1.9
Acenaphthylene	44	640	3.1	4.8	6.3	3.7	7.4	24	8.9	7.8	5.6	2.6	2.4	4.9	2.6	4.3	16	12
Anthracene	85	1100	3.1	4.8	4.2	3.7	7.4	28	8.9	7.8	5.6	2.6	2.4	15	2.6	2.2	19	12
Benz(a)anthracene	261	1600	21	17	15	11	51	237	24	25	14	8	9.4	117	15	17	65	66
Benzo(a)pyrene	430	1600	28	24	21	17	66	249	37	39	25	13	9.4	136	20	22	72	81
Benzo(b)fluoranthene	na	na	34	29	27	22	92	300	46	49	28	16	9.4	112	20	26	146	93
Benzo(e)pyrene	na	na	18	17	17	13	44	174	27	27	17	11	4.7	54	15	17	53	54
Benzo(g.h.i)perylene	na	na	15	10	8	7	18	170	13	14	19	11	9.4	54	15	17	44	62
Benzo(k)fluoranthene	na	na	21	19	21	17	48	123	30	31	17	11	9.4	56	10	13	50	58
Chrysene	384	2800	25	19	17	15	59	241	30	41	17	11	9.4	112	15	17	140	77
Coronene	na	na	1.5	1.2	1.1	0.9	1.8	7.9	3.0	3.9	5.6	5.3	2.4	12	2.6	4.3	12	19
Dibenz(a.h)anthracene	63	260	6.1	2.4	1.1	0.9	7.4	20	4.4	3.9	2.8	1.3	2.4	12	2.6	2.2	12	15
Fluoranthene	600	5100	40	34	34	26	103	427	61	62	36	18	24	226	26	35	162	147
Fluorene	19	540	1.5	1.2	1.1	0.9	1.8	16	3.0	1.9	1.4	1.3	2.4	2.4	2.6	2.2	6.2	3.9
Indeno(1.2.3.cd)pyrene	na	na	12	7.2	6.3	5.6	18	170	10	12	17	11	4.7	51	10	13	34	46
N-2-Fluorenyl Acetamide	na	na	15	12	11	9.3	18	20	7.4	10	14	13	24	12	26	22	16	19
Naphthalene ^b	160	2100	21	1.2	15	7.4	18	20	7.4	1.0	19	13	14	7.3	15	17	19	19
Perylene	na	na	18	14	13	7.4	33	59	8.9	12	11	7.9	4.7	24	15	17	37	35
Phenanthrene	240	1500	12	12	11	9.3	26	83	22	21	11	11	14	49	10	13	40	35
Pyrene	665	2600	43	38	36	26	96	391	62	62	39	21	24	243	31	39	168	143
Low molecular weight PAHs	552	3160	55	32	44	28	74	166	43	35	47	32	31	57	43	50	106	87
High molecular weight PAHs	1700	9600	163	135	124	95	382	1565	218	234	134	72	78	847	110	132	620	529
Total PAHs	4000	45000	351	276	273	209	726	2783	421	439	312	193	191	1305	268	312	1125	1006
TBT (ngSn/g)	5	70	0.5	1.3	1.2	1.2	1.3	0.6	18.5	2.0	0.5	0.5	10.8	27.7	21.2	0.6	3.2	1.7
TOC content (%)	-	-	3.26	4.16	4.73	5.4	2.72	2.53	6.75	5.13	3.59	3.8	2.12	4.11	1.96	2.31	3.21	2.59
^a Pre-dried analytical results	^b Initial analytical result																	

na - not available Exceedence of ISQG-L

*Normalized to 1% total organic carbon. Note: Concentrations in this Table are normalized to 1% total organic carbon as required by ANZECC/ARMCANZ (2000)

Table 5. Concentrations of Tributyltin (TBT) in Sediments Worldwide

Location	Country	TBT Concentration Range (ngSn/g)	Authors
Ross Sea	Antarctica	28 - 2,110	Negri et al. (2004)
Coastal area	Thailand	4 - 4,500	Kan-Atireklap et al. (1997)
Marinas and shipyards	Hong Kong	<10 - 53,000	Ko et al. (1995)
Auckland shipyards	New Zealand	<2 - 1,360	de Mora et al. (1995)
North and Baltic Sea marinas	Germany	570 - 17,000	Biselli et al. (2000)
Arcachon Bay	France	1 - 650	Sarradin et al. (1994)
East Coast estuaries	United Kingdom	<3 - 3,935	Dowson et al. (1992)
Coastal area	Bahrain	128 - 1,930	Hasan and Juma (1992)
Coastal area	Mediterranean Sea	30 - 1,375	Gabrielides et al. (1990)
Port Curtis, Queensland	Australia	25 - 655	Jones et al. (2005)
Hawkesbury River	Australia	0.1 - 9.6	EPA (1996)
Hawkesbury River Marina at Brooklyn	Australia	5 - 37	Patterson Britton (2001)
Hawkesbury River	Australia	1.4 - 125	URS (2007)
Trigger value (low) ^a		5	ANZECC/ARMCANZ (2000)
Trigger value (high) ^a		70	ANZECC/ARMCANZ (2000)

^aSediment quality guideline trigger values (ANZECC/ARMCANZ, 2000). Note: Concentrations of TBT are usually normalized to 1% Total Organic Carbon.

Table 6. General Information on Organic Booster Biocides

GENERAL INFORMATION

					First	
				No. antifouling	registered	
				products	in	
Antifouling biocide	Chemical		Approved in	registered in	antifouling	
(common name)	group	systematic name	Australia	Aust.	product(s)	Other uses in Australia
	urea					
Diuron	herbicide	dichlorophenyl dimethylurea	Yes	23		herbicide, algalcide (~87 products)
Irgarol 1051	s-triazine	2-methylthio-4-t-butylamino-6-				
(Kathon 5287)	herbicide	cyclopropylamino-s-triazine	No			
		4,5-dichloro-2-n-octyl-4-				
Sea-nine 211	isothiazolone	isothiazolin-3-one	No			
Dichlofluanid		N-dimethyl-N-phenylsulfamide	Yes	1	2005	wood preservative
		2,4,5,6-tetrachloroiso-				
Chlorothalonil		phthalonitrile	Yes	1	2006	fungicide (~41 products)
Zinc pyrithione	pyrithione				2002 to	
(ZPT)	complex	zinc 2-pyridinethiol-1-oxide	Yes	5	2006	parasiticide (4 products)
		2,3,5,6-tetrachloro-4-				
TCMS pyridine		(methylsulfonyl)pyridine	No			
		2-(thiocyanomethylthio)				
TCMTB		benzothiazole	No			
	dithiocarbam	zinc ethylene				
Zineb	ate	bisdithiocarbamate	Yes	1	1997	fungicide (~3 products)
	dithiocarbam	bis(dimethylthiocarbamoyl)dis			2002 to	
Thiram	ate	ulfide	Yes	5	2003	fungicide (~22 products)

PHYSICOCHEMICAL BEHAVIOUR

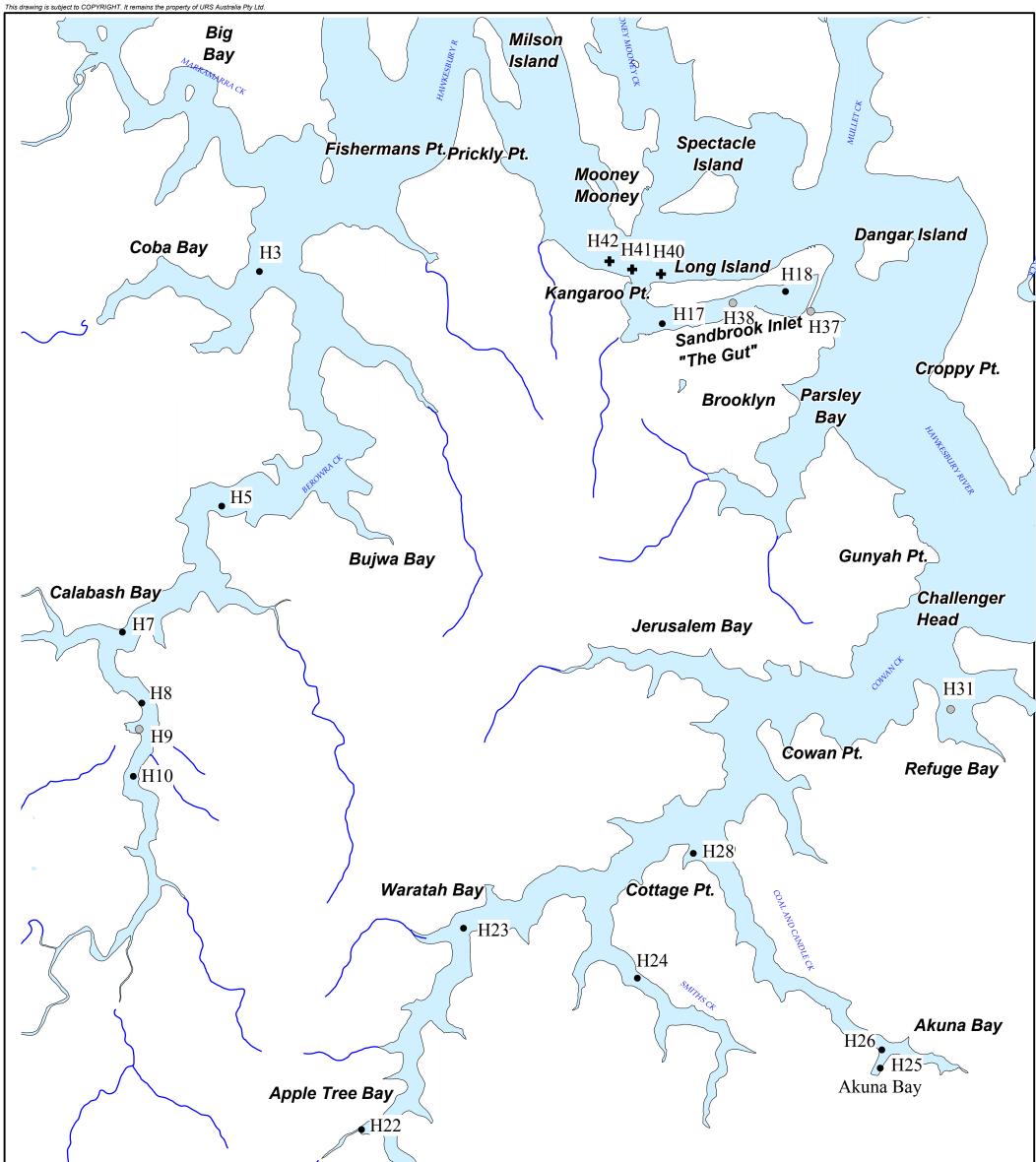
Antifouling biocide	Half-life (in			Octanol-water partition coefficient (log	
(common name)	sea water)	Water solubility (mg/L)	(log Kd)	Kow)	General description of behaviour
Diuron	~14 to 35 days	35	8.9 ± 13.4	2.8	Relatively persistent in seawater, only weakly sorbed to sediments
Irgarol 1051	~100 days	7	3.4	3.95	Considered to be non or slowly biodegradable/ persistent in the environment
Sea-nine 211	<24 hrs		625	2.8	Degrades rapidly, binds strongly to sediment
Dichlofluanid	53 hours	<2		3.7	Degrades rapidly, binds very strongly to sediment
Chlorothalonil	~ 2 to 8 days	0.9		2.88	Degrades rapidly, degradant is persistent and ecotoxic
Zinc pyrithione	<24 hrs			0.97	Degrades rapidly, binds strongly to sediment
TCMS pyridine					
ТСМТВ	~30 days	10.4			
Zineb	4 days	0.07-10		1.31	Not readily biodegradable, considered persistent, binds strongly to sediment
Thiram		30		1.73	Not readily biodegradable, considered persistent

Note: All booster biocides can accumulate in sediments if introduced as paint particles

Source: Amog Consulting (2002) and references therein.

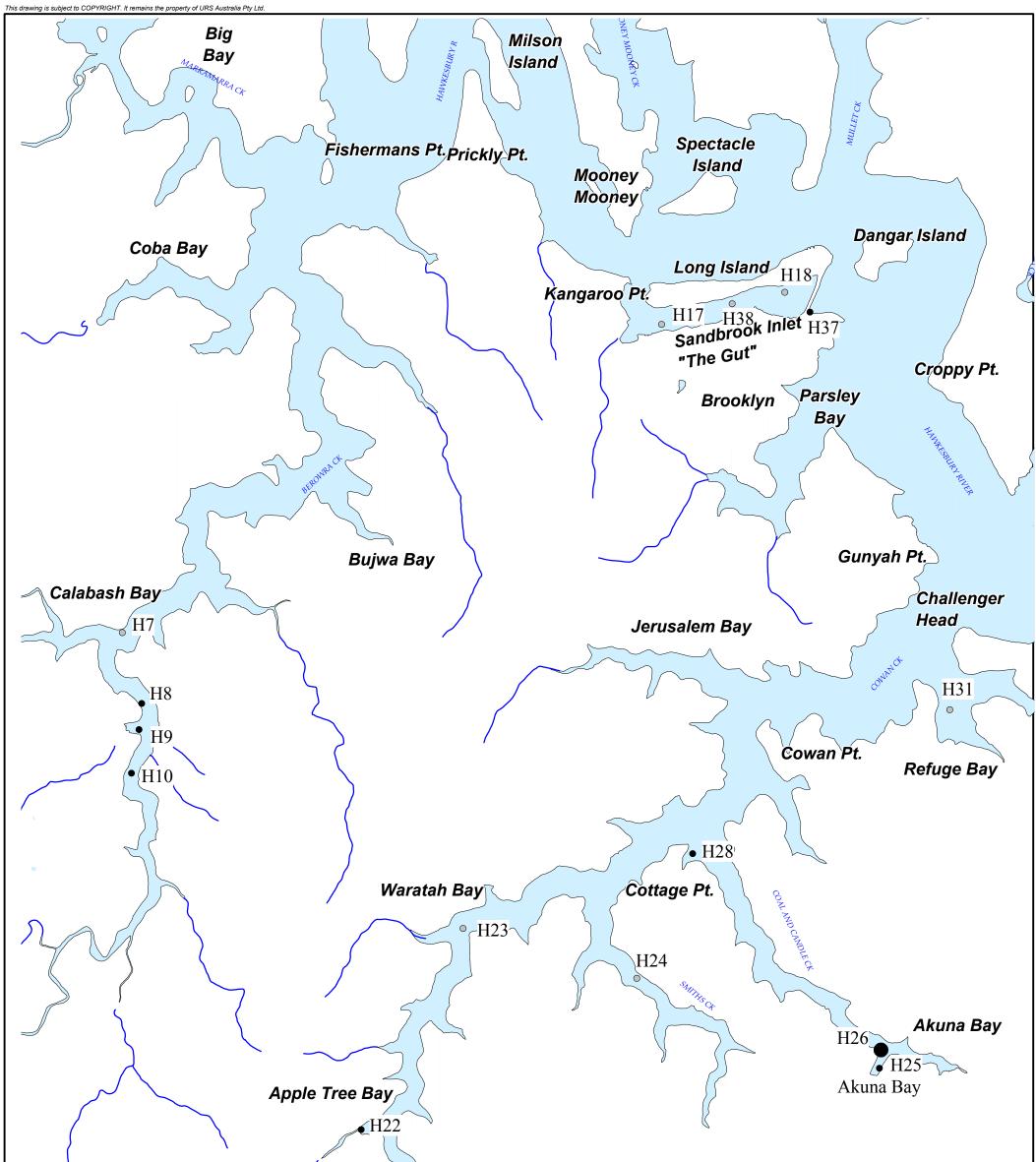
Table 7. Concentrations of Tributyltin (TBT) and Diuron in Sediments at Sampling Locations H9, H31, H37, and H38.

Sampling Location	TBT	Diuron
H9	14	30
H31*	3	<1
H37	25	9
H38	11	10
QC5 (H9)	20	40
Concentrations in µg/kg		


Note: TBT-Sn concentrations were converted to TBT (the compound). Molecular weight of TBT = 2.44 x TBT-Sn.

Figures

Figure 1. Sampling Locations.



Source:	H21 Bobbin Head	 ANALYTES ● TBT, PCB, PAH, OCP, OPP ● TBT, PCB, PAH, OCP, OPP and booster biocides ● STP Site (PCB, PAH, OCP, OPP, BTEX, nutrients, heavy metals, grain size) Note: Silver at H3, H5, and H7 only 		
Client Hornsby Shire Council	Hornsby Shire Council ANTIFOUL STUDY (STAGE 2)			
URS	Drawn: CM Approved: DRAFT Date: 22-05-07 Job No: 43217595 File No: Figure 1 Sampling Locations.wor	Figure: 1		

Figures

Figure 2. Concentrations of TBT in Sediments.

Source:	H21 B	obbin Head	ж. Ф. и. С		TBT (ngSn/g) ● >70 ● 5-70 ● <5	
Client Hornsby Shire Council	Project ANTIFOU	IL STUDY (STAG	iE 2)	Title TBT in Sediments		
URS	Drawn: CM Job No: 43217595	Approved: DRAFT File No: Figure 2 TBT.v	Date: 22-05-07 vor	Figure: 2		Rev: A A4

Q27/2006 SEDIMENT AND ANTIFOUL MONITORING PROGRAM STAGE 2 - ANTIFOUL STUDY

Figures

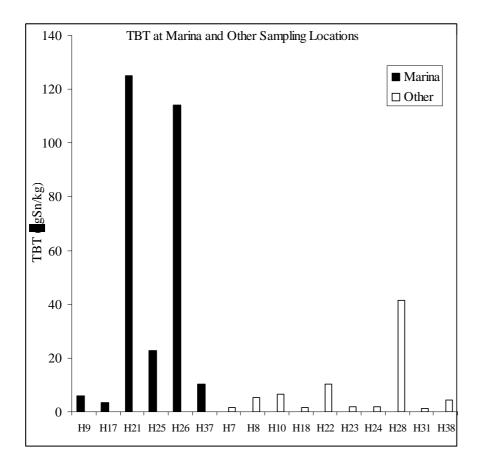


Figure 3. Concentrations of TBT in 16 Sediment Samples from Marinas and Other Sampling Locations.

Figures

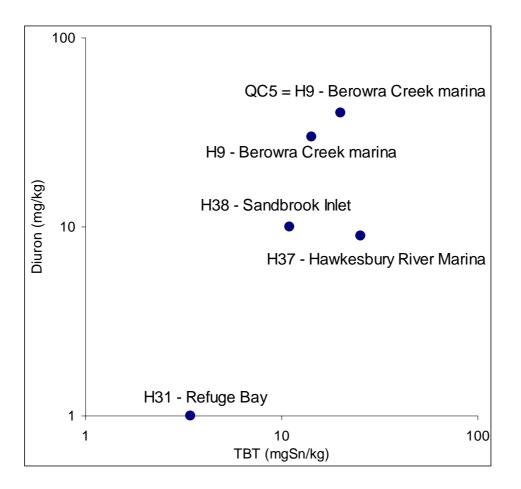


Figure 4. Concentrations of Tributyltin (TBT) and Diuron in Sediments at Sampling Locations H9, H31, H37, and H38. Note: TBT-Sn concentrations were converted to TBT (the compound). Molecular weight of TBT = $2.44 \times \text{TBT-Sn}$.

	Q27/2006 SEDIMENT AND ANTIFOUL MONITORING PROGRAM STAGE 2 - ANTIFOUL STUDY
Annondiaca	
Appendices	Appendix A – Sediment Study (Stage 1) Final Report

Appendix A – Sediment Study (Stage 1) Final Report

Appendices

Appendix B - Sediment Study (Stage 1) - Sampling and Analysis Plan

SAMPLING AND ANALYSIS PLAN

Sediment and Antifoul Monitoring Program – Stage 1 Sediment Study

Prepared for

Hornsby Shire Council

22 November 2006

Author:	Dr Carsten Matthai Senior Environmental Scientist	North Sydne Tel: 61 2 8	ia Pty Ltd Miller Street y, NSW 2060 Australia 8925 5500 8925 5555
Project Manager:	Dr Carsten Matthai Senior Environmental Scientist		
Project Director:	Stuart Taylor Principal Environmental Scientist	Date: Reference: Status:	22 November 2006 Stage 1 Sediment Study SAP Final 22-11-06.doc Final

1	Introduction	1-1	
	 Background Scope of Sampling and Analysis Plan Objectives 	1-1 1-1 1-2	
2	Background		
	 2.1 Previous Sediment Studies 2.2 Characterisation of Study Area and Catchment 2.3 Sediment Study (Stage 1) - Scope of Work 2.4 Contaminants of Potential Concern 	2-1 2-2 2-3 2-4	
3	Project Organisation and Responsibilities		
	 3.1 Project Director – Stuart Taylor 3.2 Project Manager – Carsten Matthai 	3-1 3-1	
4	Scope Of Work		
	 4.1 Introduction 4.2 Sampling Site Location 4.3 Sampling Contingency Plans 4.4 Sediment Subsampling 4.5 Sediment Analyses and Analytical Detection Limits 	4-1 4-1 4-1 4-1 4-2	
5	Sediment Sampling Methodology		
	 5.1 Documentation of Field Activities 5.1.1 General Field Activities Documentation 5.1.2 Sampling Containers 5.1.3 Sample Labelling 5.1.4 Chain of Custody Protocols 5.1.5 Decontamination 5.2 Field QA/QC Samples 5.3 Surveying 	5-1 5-1 5-2 5-2 5-3 5-3 5-3	
6	Laboratory Analysis		
	 6.1 Laboratory Analysis Program 6.2 Analytical Testing Program 6.3 Sample Handling, Preservation and Storage 6.3.1 Laboratory Receipt of Samples 6.3.2 Pre-and Post-analysis Storage 6.4 Analytical Quality Assurance/Quality Control (QA/QC) 6.4.1 Laboratory QA/QC Samples 6.4.2 Data Handling 	6-1 6-1 6-1 6-1 6-2 6-2 6-2 6-4	
7	6.4.3 Data Validation References	6-5	
7	References	/-1	

J:\JOBS\43217595\HORNSBY SHIRE COUNCIL - SED & ANTIFOUL STUDY\DELIVERABLES\SED & ANTIFOUL FINAL REPORT\APP B - ANTIFOUL STUDY (STAGE 2) -REPORT\APP B - SEDIMENT STUDY (STAGE 1) - SAP\STAGE 1 SEDIMENT STUDY SAP FINAL 22-11-06.DOC\5-OCT-07 i

Contents

8	Limitations	 R_1
0		U- I

J:\JOBS\43217595\HORNSBY SHIRE COUNCIL - SED & ANTIFOUL STUDY\DELIVERABLES\SED & ANTIFOUL FINAL REPORT\APP B - ANTIFOUL STUDY (STAGE 2) -REPORT\APP B - SEDIMENT STUDY (STAGE 1) - SAP\STAGE 1 SEDIMENT STUDY SAP FINAL 22-11-06.DOC\5-OCT-07

 Table 1
 Proposed Sampling Locations

Figure

Figure 1 Proposed Sampling Locations

J:\JOBS\43217595\HORNSBY SHIRE COUNCIL - SED & ANTIFOUL STUDY\DELIVERABLES\SED & ANTIFOUL FINAL REPORT\APP B - ANTIFOUL STUDY (STAGE 2) -REPORT\APP B - SEDIMENT STUDY (STAGE 1) - SAP\STAGE 1 SEDIMENT STUDY SAP FINAL 22-11-06.DOC\5-OCT-07

1.1 Background

To foster better management of estuaries, the New South Wales (NSW) Government formulated an Estuary Management Policy that advocates the integrated, balanced, responsible and ecologically sustainable use of the State's estuaries. The Estuary Management Policy is defined in the Estuary Management Manual (NSW Government, 1992) and outlines a structured management process leading to the implementation of Estuary Management Plans for estuaries in NSW. Estuary Management Plans encompass all values and uses of the estuary, along with the principles of ecologically sustainable development and total catchment management.

The Estuary Management Manual recommends an eight step process to prepare and implement an Estuary Management Plan, as follows:

- 1) Form an estuary management committee;
- 2) Assemble existing data (data compilation study);
- 3) Undertake estuary processes study;
- 4) Undertake estuary management study;
- 5) Prepare draft estuary management plan;
- 6) Public review of draft plan;
- 7) Adopt and implement estuary management plan; and
- 8) Monitor and review the management process as necessary.

In compliance with step seven, the Berowra Creek Estuary Management Plan was implemented in 2000. The Brooklyn Estuary Management Plan is due for completion in 2006. The need to establish a Sediment Study (Stage 1) and Antifoul Study (Stage 2), to establish the level of anthropogenic contamination within the estuaries of Hornsby Shire, was identified in the Berowra Creek Estuary Process Study (Coastal and Marine Geosciences, 1998), Brooklyn Estuary Process Study (University of New South Wales, 2002) and the Berowra Creek and Brooklyn Estuary Management Plans.

1.2 Scope of Sampling and Analysis Plan

This Sampling and Analysis Plan (SAP) presents specific quality assurance and quality control (QA/QC) details to be employed during the investigation and it covers the following aspects of the investigation:

- Scope of work;
- Rationale for selection of sampling locations;
- Brief description of sampling locations;

Introduction

- Identify contaminants of potential concern (COPC);
- Project organisation and responsibilities;
- Field methods and procedures including:
 - Occupational health and safety (OH&S) procedures
 - Contingency plan;
 - Sediment sampling equipment;
 - Sample location;
 - Equipment decontamination; and
 - Field documentation.
- Laboratory analytical program including:
 - NATA-accredited Laboratory to be used;
 - Analytical testing program, including detection limits (LORs);
 - Sample handling, preservation and storage;
 - Analytical QA/QC and data validation; and
 - Data management procedures.

1.3 Objectives

The sediment sampling will augment the previous geochemical sediment sampling program conducted during the Berowra Creek Estuary process Study (1998) and the Brooklyn Estuary Process Study (2002). The Stage 1 Sediment Study has the following objectives:

1) Determine the location and magnitude of contaminated sediments within the study area;

2) Compare current levels of sediment contamination with levels established in previous studies to identify possible areas of accumulation (identify sinks);

3) Identify sources of contaminants present in sediments;

4) Determine trends in contamination of sediments;

5) Assess potential anthropogenic impacts on sediment quality;

Introduction

6) Establish a set of baseline ('before') sediment quality data prior to the commencement of discharge from the Brooklyn and Dangar Island Sewerage Scheme outfall; and

7) Provide recommendations for remedial management actions based on the above objectives.

2.1 Previous Sediment Studies

The Hawkesbury River has been studied for the presence of anthropogenic trace metal contaminants for over 20 years. Early work included the determination of the speciation of iron, copper and zinc in waters of the Hawkesbury River by Pik et al. (1982) and the assessment of heavy metal enrichment in the surface microlayer of the Hawkesbury-Nepean River system (Barnes et al., 1982). Markich and Brown (1998) conducted a survey of trace metal concentrations in the freshwater reaches of the Hawkesbury River, the first such survey of a permanent coastal river in Australia using 'clean' sampling and handling techniques. That study established that concentrations of nutrients, organic carbon and trace metals in the Hawkesbury River increased as a consequence of anthropogenic inputs, particularly point discharges from sewage treatment plants (STPs) as well as diffuse urban and agricultural runoff during storm events. Markich and Brown (1998) established that the temporal variability of the mean concentrations of trace metals is related to the variability in water discharge, with an increase in the concentrations of trace metals by a factor of up to 2 with increasing water discharge, thereby supporting the presence of the effects of anthropogenic point and diffuse source contributions during high flow events.

However, anthropogenic contaminants in surface waters of the Hawkesbury River are highly variable and transient in nature. In contrast, studies of sediments, which represent a sink for anthropogenic contributions in an aquatic systems, may establish a time-integrated signature of anthropogenic contributions in an aquatic environment. The study of anthropogenic heavy metal contaminants in sediments in the Hawkesbury River has only been conducted since the mid-1990s and the majority of contaminant investigations of sediments in the Hawkesbury River estuary have been conducted by the Environmental Geology Group (EGG) at the University of Sydney, lead by Professor Gavin Birch, although other studies were conducted as well (i.e. Parker, 1992; Shotter, 1994; Hardiman and Pearson, 1995; O'Donnell, 1995; Hayes and Buckney, 1998; Birch et al., 1998; Simonovski et al., 2003).

Birch et al. (1998) established that the concentrations of heavy metals in bed sediments of the Hawkesbury River are low and close to background, but are substantially elevated in the headwaters of Berowra Creek, Cowan Creek and in southeast Pittwater. In addition, high levels of contamination of sediments have been found in the upper and lower sections of the river adjacent to the Hornsby STP and the Calna Creek STP. Simonowski et al. (2003) reported that sediments in the upper Hawkesbury-Nepean River are not heavily polluted by heavy metals, although elevated concentrations of heavy metals were found in sediments near industrialized areas and sewage treatment plants. Other previous sediment studies of sediments in the Hawkesbury River estuary include Bourgues et al. (1998) (nutrients), Mann et al. (1996) (nutrients and algal blooms), Coastal & Marine Geosciences (1998) (nutrients and heavy metals) and University of New South Wales (2002).

The Berowra Creek Estuary Process Study Technical Report: Sediment Characteristics and Processes (Coastal and Marine Geosciences, 1998), completed as a component of the Berowra Creek Estuary Process Study, identified surface sediments in Berowra Creek estuary enriched in nutrients (TKN, TP) and heavy metals (Cu, Pb, Zn, Cr and As). A recommendation of the study was further investigation of sediment texture/composition and contamination relationships.

The Brooklyn Estuary Processes Study (UNSW, 2002) identified that data quality and coverage of previous studies was insufficient to adequately describe the degree of sediment contamination in the Brooklyn estuary study area. A recommendation of this report was to establish a detailed sampling program to analyse and interpret sediment contamination in the area.

2.2 Characterisation of Study Area and Catchment

The Hawkesbury River system has a diverse range of uses and is a highly valued ecological, social and economic resource. Pressures on the environment have increased with growing populations and changes in land use patterns, resulting in an overall decline in the health of the river and its tributaries. The estuaries within Hornsby Shire are part of the larger Hawkesbury River system which is a popular location for both recreational and commercial boat users.

The Stage 1 Sediment Study will be conducted in a section of the Lower Hawkesbury River within the Hornsby Shire Local Government Area. The study area is identified as the primary waterways within Hornsby Shire, which include the Hawkesbury River, Berowra Creek and Cowan Creek. The study area covers the Hawkesbury River channel and associated tidal water bodies from the upstream limit of Wisemans Ferry to the downstream limit of Walker Point and Flint and Steel Point (including Berowra Creek and Marramarra Creek). Mooney Mooney and Mullet Creeks on the northern side of the river are excluded from this study with the exception of one sample location in each of these two creeks, respectively, to allow for the resampling of Sites 1 and 3 of the Brooklyn Estuary Process Study (UNSW 2002). Therefore the study area incorporates the two study areas as defined in the Berowra Creek and Brooklyn Estuary Process Studies with adjustments to exclude Mooney Mooney and Mullet Creeks and include the connecting water body of the main Hawkesbury River from Wisemans Ferry to Walker Point and Flint and Steel Point.

The Berowra Creek estuary catchment covers an area of approximately 310 km² consisting primarily of natural bushland with urban and semi-rural developments along the ridges of the upper catchment area. Due to the topography of the catchment there is limited development directly adjacent to the waterway. A number of small river settlements exist along the foreshores of the estuary and are generally only accessible by boat. The estuary extends for over 23 km in a southerly direction from the Hawkesbury River to the tidal limit at Rocky Fall Rapids.

The Brooklyn estuary catchment covers an area of approximately 185 km². The majority of the catchment is steep bushland lying within the National Park boundaries of Kuring-gai Chase National Park on the southern shore and Brisbane Water National Park on the northern shore. The most densely populated areas on the Brooklyn estuary are the settlements at Brooklyn, Dangar Island and on the banks of Mooney Mooney Creek. A new development affecting the Brooklyn estuary is the construction of the Sydney Water Corporation's Brooklyn and Dangar Island Sewerage Scheme. It is estimated that residents will begin decommissioning current on-site sewerage management systems and connecting to the new system from September 2007. The STP outfall will be located on the second foundation pier from the southern bank of the Peats Ferry road bridge and is estimated to discharge approximately 0.71 MLd⁻¹ of treated effluent into the Lower Hawkesbury River.

J:\JOBS\43217595\HORNSBY SHIRE COUNCIL - SED & ANTIFOUL STUDY\DELIVERABLES\SED & ANTIFOUL FINAL REPORT\APP B - ANTIFOUL STUDY (STAGE 2) -REPORT\APP B - SEDIMENT STUDY (STAGE 1) - SAP\STAGE 1 SEDIMENT STUDY SAP FINAL 22-11-06.DOC\5-OCT-07

There are a number of estuary based industries in the area including tourism, recreation and commercial boating and fishing, oyster and prawn leases. Recreational and commercial boating and fishing are one of the primary uses of these waterways and the escalating popularity of these activities and their impact on the surrounding environment is an issue of concern. Oyster leases within the estuary have recently suffered a decline since the introduction of QX disease in the Hawkesbury.

2.3 Sediment Study (Stage 1) - Scope of Work

The current investigation includes the following:

- Determine the distribution of sediment contamination within the study area;
- Compare current levels of sediment contamination with levels established in previous studies to identify possible areas of contaminant accumulation;
- Assess the bioavailability of contaminants present in the sediments;
- Identify major potential sources of contamination;
- Assess potential anthropogenic impacts on sediment quality;
- Establish a set of baseline ('before') sediment quality data prior to the commencement of discharge from the Brooklyn and Dangar Island Sewerage Scheme outfall; and
- Provide recommendations for management actions based on the above objectives.

The assessment of historical inputs of anthropogenic contaminants to the Hawkesbury River System sediments and an evaluation of data from previous investigations, in particular from the Brooklyn Estuary Process Study (2002) and the Berowra Creek Estuary Process Study (1998), has demonstrated that surficial sediments in the Lower Hawkesbury River System displayed anthropogenic enrichments of some inorganic and organic contaminants and that sediments at some locations exceeded the ANZECC/ARMCANZ (2000) sediment quality guideline values.

Fifty-five proposed locations were selected for the sampling of surficial sediments. One homogenised sample will be collected of the upper 0.1 m of sediment at each sampling location. Samples will be homogenized using stainless steel utensils and a stainless steel bowl and analysed for CoPC.

Topic-related literature was evaluated to support the sampling rationale. The proposed sampling locations were selected based on the review of the following studies: Berowra Creek Estuary Process Study (Coastal & Marine Geosciences, 1998), Brooklyn Estuary Process Study (University of New South Wales, 2002), Bourgues et al. (1998), Mann et al. (1996), Birch et al. (1998), EPA (1996), Taylor (2000) and Simonovski et al. (2003).

The proposed 55 sampling locations include the 20 locations that were sampled during the Berowra Creek Estuary Process Study (1998) (13 Locations: VCBC1 to VCBC11, MCAH1 and MCAC2; Note: Sampling Location MCAH2 in Marramarra Creek is proposed to be moved to the mouth of Marramarra

Background

Creek east of Kulkah Creek) and the Brooklyn Estuary Process Study (2002) (7 Locations: Site 1, Site 3 and Sites 5 to 9; Note: Site 1 and Site 3 are located in Mooney Mooney Creek and Mullet Creek, respectively, and are outside the current study area and are therefore included as single resampling locations only without considering additional sampling locations in these two creeks. The resampling of sediments at 19 of the 20 sampling locations allows a comparison with previous data, enhance the robustness of the overall data to increases in spatial variability and provide a dataset that is relatively robust. The 35 proposed new sampling locations were selected using existing information about known point sources of contamination and previously identified sediment contamination data, including the database from the Environmental Geology Group at the University of Sydney, which comprises contaminant data for more than 7,000 sample locations in estuaries in the Sydney metropolitan area and surrounding regions, as well as considering a balanced regional distribution of sampling locations in the Lower Hawkesbury River estuary.

Sampling will be conducted from a small motorized boat provided by Hornsby Shire Council over a period of two days from 13 to 14 December 2006, weather permitting. The date and time of sampling, water depth, latitude and longitude and a description of the sediment type will be recorded in the field.

The regional sediment geochemical data will be displayed spatially on a GIS system (MapinfoTM) and the data will be screened against ANZECC/ARMCANZ (2000) sediment quality guideline values. An assessment of contaminant sources will be performed by utilizing elemental normalization with Al or other analytes of lithogenic (i.e. non-anthropogenic) origin (e.g. Sr, Co). An assessment of background concentrations based on available data for the Hawkesbury River and other estuarine sediments in the Sydney area (Taylor, 2000) will enable the estimation of enrichments above pre-anthropogenic background for the various analytes (except nutrients).

An assessment of potential sources of Cu-based antifouling agents will be performed using an assessment of the Cu/Zn concentration ratios in the surficial sediments as a "TBT-proxy" indicator. This approach has been used successfully by Taylor (2000) to assess anthropogenic contributions of contaminants from marinas and areas of increased boating activities in the waterways of Port Jackson and in the Hawkesbury River.

2.4 Contaminants of Potential Concern

Sediment samples collected during the Sediment Study (Stage 1) sampling will be analysed for the following:

- TKN, TOC, NOX;
- Ca, Mg, Be, Al, V, Cr, Mn, Fe, Co, Cu, Zn, As, Sr, Ni, Ba, Pb, Cd;
- Polychlorinated Biphenyls;
- Polycyclic Aromatic Hydrocarbons;
- Organochlorines;

• Organophosphates;

Grainsize in four fractions (0.063 mm; 0.063 mm-0.25 mm; 0.25 mm-2 mm; >2 mm) will be determined.

Organic compounds will be analysed for standard limits of reporting and not ultratrace levels.

Additional analytes (not included in the required scope of works) include total petroleum hydrocarbons (TPH) (C_6 - C_{36}) and BTEX, which will be analysed in all primary and QA/QC sediment samples without additional costs to the project budget.

The project organisation identifies the reporting structure and responsibilities of individuals involved in the project. The roles of responsible individuals under this SAP are described below:

3.1 **Project Director – Stuart Taylor**

The Project Director has the overall responsibility for the project. The Project Director monitors the project work and provides supervision and support to the Project Manager (defined below). Specific responsibilities of the Project Director include:

- Ensure that contracting and risk mitigation requirements are met, that the work is conducted in accordance with the terms of the contract, and that contractual changes are formally approved;
- Ensure that the Project Manager and staff are technically and professionally qualified, have adequate relevant experience, and represent sufficient resources to meet project objectives;
- Review project work and deliverables at least at designated project milestones;
- Ensure that appropriate peer reviews are conducted;
- Ensure that project files are established and that staff orientations are conducted;
- Ensure that project deliverables are provided on time and within budget; and
- Establish and maintain communications with the client project manager and assure that the objectives of the project, as prescribed by the contract terms, are met to Hornsby Shire Council's satisfaction.

3.2 Project Manager – Carsten Matthai

The Project Manager reports to the Project Director and has primary responsibility for all aspects of the project including meeting the needs of Hornsby Shire Council. Specifically, responsibilities include the quality of the work product, schedule and budget control, asset management, and communications with staff and superiors. Specific duties of the Project Manager include:

- Implement contracting and risk mitigation requirements and determine if the services rendered are consistent with the terms of the contract;
- Determine that all contractual terms, including changes in scope, schedule and budget are formally agreed to by authorised representatives of Hornsby Shire Council and that such agreements are documented in writing;
- Determine, in consultation with the Project Director, that qualified staff are assigned to the project and represent sufficient resources to meet project objectives;

- Conduct the project so that deliverables are of professional quality and formally reviewed at predetermined times by qualified staff. Reviewers may include project consultants, the Project Director and the Peer Reviewer (Dr Stuart Simpson, CSIRO);
- Expedite the work of Peer Reviewers involved in the project by formally communicating peer review schedules and providing the information required for peer reviews in a timely fashion;
- Establish and maintain project files; maintain written documentation of relevant contractual, financial and administrative transactions, work plan conformance, quality assurance conformance, deliverables submitted and other relevant technical and managerial data. Close the files upon completion of the project or of major project phases;
- Monitor schedules and budgets; provide notification to Hornsby Shire Council of requirements for budget or schedule adjustments before overruns have occurred and document justification for such changes;
- Maintain close communications with and be readily available to Hornsby Shire Council's representative to periodically assure that Hornsby Shire Council's objectives are being satisfactorily met within the terms of the contract;
- Review, in a timely manner, all invoices to verify charges and their conformance with contractual terms; communicate with Hornsby Shire Council concerning inquiries about invoices and interact with Accounting to facilitate collections; and
- Present deliverables and, subsequently, contact Hornsby Shire Council's representative to verify his/her understanding and ascertain his/her assessment of the work.

4.1 Introduction

This section of the SAP details the procedures to be used as part of the geochemical investigation of the sediments in the Lower Hawkesbury River estuary. By defining the procedures to be used, it is possible to develop a uniform approach to the Stage 1 Sediment Study and the subsequent Antifoul Study (Stage 2) investigations and thereby, minimise potential impacts on the quality and representativeness of data collected.

4.2 Sampling Site Location

The scope of works for the Stage 1 Sediment Study investigation comprises the collection and analysis of sediment grab samples to a maximum sediment depth of 0.1 m depth at 55 locations (Sample Locations H1 to H55) in the study area (Figure 1). Sampling will be undertaken from a small motorized vessel provided by Hornsby Shire Council. Samples will be located with a GPS positioning accuracy of +/-5 m. The GPS unit will be provided by Hornsby Shire Council. The location and collection of samples in the field will be the responsibility of the URS field team comprising Dr Carsten Matthai and two Hornsby Shire Council staff (names to be provided).

4.3 Sampling Contingency Plans

The sampling will be undertaken in the channels, creeks and embayments of the Lower Hawkesbury River, which is relatively protected during storms. However, in the case of adverse weather which may present an OH&S risk to field staff, sampling would be discontinued and rescheduled. It is likely that the sampling program will be completed over a period of two consecutive days, weather permitting.

4.4 Sediment Subsampling

Samples H1 to H55 will be analysed to enable classification of the contaminant status of the sediments. Samples will be collected to a depth of up to 0.1 m at each sampling location, as detailed in Table 1.

Grab samples collected during the Stage 1 Sediment Study investigation will be collected with a stainless steel tall Ekman grab sampler (dimensions: 0.15 m x 0.15 m x 0.225 m) wherever possible. A Ponar grab sampler may be required to sample sandy sediments at some sampling locations. Sample management procedures on the sampling vessel include the careful collection of the sediment samples from the grab sampler, following the recovery of the sediment from the estuary floor. Essentially, all sample handling and processing will be performed to minimize contamination and sample mix-ups. The workspace on the boat will be washed down with ambient seawater to clean all surfaces and minimize dust contamination of samples. Nitrile gloves will be worn by the sampling personnel.

Subsampling will be performed using a stainless steel sampling spoon. The sampler, who is wearing nitrile gloves, will maintain utmost care in ensuring that no cross-contamination between samples is

possible. Samples collected from each interval will be homogenised in a stainless steel bowl and then placed into appropriately cleaned and preserved containers provided by the laboratories (glass sampling containers with Teflon-lined lids and a plastic bag for grain size analysis). Sample containers will be filled with zero headspace and labelled immediately. Samples will then be stored in eskies on ice. All eskies will be filled to capacity and sealed with adhesive tape. A CoC form will be included in the esky. Following return to shore, the samples will be delivered to the laboratory within 48 hours of sampling for processing and analysis.

4.5 Sediment Analyses and Analytical Detection Limits

Whole sediment samples from locations outlined in Table 1 will be submitted to an independent NATA accredited laboratory, ALS Environmental, for analysis of the COPCs listed in Section 2.5. Samples for PAHs, OCPs, OPPs and PCBs will be analysed for standard limits of reporting and not ultratrace levels. All analytical methods are NATA accredited for all of the tests, except for particle size distribution.

5.1 Documentation of Field Activities

5.1.1 General Field Activities Documentation

Bound field logbooks will provide the means for recording most field activity records and observations. The aim of the documentation within the field logbooks is to allow future reconstruction of field activities without relying on the memory of field team members. To supplement the information and data collected during sample collection and field testing, field data sheets may also be completed.

Items that will be recorded into the field logbook include:

- Sample collection method; and
- Health and safety documentation.

Field documentation will include, at a minimum, the following information as is applicable to the specific task at hand:

- Project name and number;
- Date, time, weather conditions;
- Personnel present;
- Type of sample;
- Sampling method;
- Sampling location description, ID and time of collection;
- Sample depth;
- Visual descriptions;
- Sample container type;
- Photograph number (where applicable); and
- Other information and observations.

The field logbook and the field data sheets will compile the field data collected during the investigation.

5.1.2 Sampling Containers

Containers for samples are cleaned and prepared by the laboratory. Glass jars for chemical analyses and plastic bags for grain size analyses will be provided by the analytical laboratory.

5.1.3 Sample Labelling

Each sample container will be clearly labelled and marked with ink in the field. Samples collected from each sampling location will have unique sample numbers.

Sample labels will include the following information:

- Sampling date;
- Sample point number/designation; and
- Comments, as required.

5.1.4 Chain of Custody Protocols

A chain of custody (CoC) record will be utilised by field personnel to document possession of all samples collected for chemical analysis. The CoC record may include, but is not limited to, the following information:

- Project name and number;
- Name(s) of sampler(s);
- Sample type, identification number and location;
- Date and time of collection;
- Number and type of containers;
- Required analyses;
- Preservatives; and
- Signatures documenting change of sample custody.

The esky containing the samples will be sealed with tape and secured with a signed custody seal. The custody seal will provide an indication of whether the cooler was opened by unauthorised personnel. The temperature that the samples were stored at following transit to the lab and upon receipt is noted on the CoC forms.

The original CoC record will accompany the samples to the analytical laboratory. A copy of the CoC record will be placed in the appropriate project file. Samples will be delivered to the laboratory within 48 hours of sample collection to ensure the specified holding times are met.

5.1.5 Decontamination

All sampling equipment and measurement equipment will be decontaminated before and after each use. In general, the principal decontamination objective is the decontamination of all equipment prior to arriving on-site, including the removal of encrusted materials by scraping and ambient seawater rinse.

5.2 Field QA/QC Samples

Field duplicate QA/QC samples will be collected for at least 10% of primary samples collected (i.e. six samples). Field duplicates, labelled QC1 to QC4, are samples that are prepared in the field by splitting a field sample, then submitting it to the laboratory as two independent samples. Field duplicates are used to measure the precision of the whole sampling and analysis process (sample collection, sample preparation and sample analysis). Significant variation in field duplicate results is often observed (particularly for solid matrix samples) due to sample heterogeneity. Field duplicates will be analysed for all analytes listed in Section 2.5.

5.3 Surveying

The sampling locations will be located using a global positioning system (GPS), provided by Hornsby Shire Council with an estimated accuracy of +/-5m.

6.1 Laboratory Analysis Program

Only commercial analytical laboratories that are accredited with the National Association of Testing Authorities (NATA) for the project specific analyses, which have been independently audited and approved by URS environmental chemists, will be used for the project. All analytical procedures performed by the laboratory (ALS) are NATA-accredited.

The objective of this SAP is to describe the methods and procedures that will be used by the selected laboratories to ensure quality, accuracy, precision and completeness of the analytical data generated as part of this investigation. The primary focus is to acquire environmental data that are scientifically sound, legally defensible and of acceptable quality.

6.2 Analytical Testing Program

The following sections provide descriptions of the analytical methodologies that will be used for the duration of this project. All United States Environmental Protection Agency (USEPA) methods referred to are from "Test Methods for Evaluating Solid Waste (SW-846)", Revision A, July 1992, US EPA.

6.3 Sample Handling, Preservation and Storage

This section outlines the general procedures necessary for sample custody that are to be performed by the laboratory. It is understood that the laboratory will act in full accordance with the terms of its NATA Registration for Chemical Testing.

6.3.1 Laboratory Receipt of Samples

Field samples for this project will be delivered to the laboratory pre-contained and pre-preserved (as appropriate) in accordance with laboratory procedures. Sample containers used for the collection of field samples are, wherever possible, to be supplied by the relevant analytical laboratory, pre-cleaned and inspected. Accompanying each delivery of samples will be a Chain of Custody (CoC) Record.

The following items are checked and performed by the laboratory upon receipt of samples with the CoC:

- The custody seals and tape on the cooler are unbroken and uncut;
- The signature on the external custody seal matches one of the sampler(s) signature(s) on the internal CoC;
- Measurement is taken to determine if samples have arrived at the appropriate temperature;
- The sample containers within the cooler are intact;
- The identification on the sample containers correspond to the entries on the CoC;

- The number of sample containers received is equal to the number of samples listed on the CoC;
- If sample custody is valid, the samples are logged in by the laboratory as per the standard operating procedure;
- A copy of the CoC is delivered to the Project Manager within three working days.

If CoC discrepancies exist, appropriate notes (signed and dated) are made on the CoC and the Project Manager is notified by the laboratory. In the event that the laboratory Sample Custodian judges the sample custody (or part thereof) to be invalid (e.g. samples arrive damaged or custody seals are broken), the Project Manager will be advised immediately and those samples will not be analysed until authorised by the Project Manager.

Any problem with a sample will be noted on the CoC Record and notified to URS in writing as soon as practicable for action or response. Laboratory capacity will be pre-agreed by the laboratory and confirmed in writing to URS prior to the submission of samples to the laboratory.

6.3.2 Pre-and Post-analysis Storage

Samples should be transported to a laboratory within 48 hours of sample collection. After the Sample Custodian has logged in the samples, they are placed in temporary refrigerated storage, and maintained at a temperature of 4^{0} C or less until analyses are performed. Sample analyses are scheduled as soon as practicable following delivery to the laboratory and extractions and analyses are consistent with the analyte holding times specified by the laboratory.

After analysis, sediment samples will be stored by the laboratory for a period of up to two months. Sediment samples will remain refrigerated for one month and on a shelf at room temperature for a further month.

6.4 Analytical Quality Assurance/Quality Control (QA/QC)

Specific mechanisms for checking the accuracy and precision of analytical data in order to ensure that data quality objectives are met, involve the analysis of the laboratory and field QA check samples.

6.4.1 Laboratory QA/QC Samples

Blanks - contaminant free samples designed to monitor the introduction of artefacts into a process. Reagent blanks or method blanks are analysed to assess the level of contamination which exists in the analytical system and which might lead to the reporting of elevated concentrations or false positive data. A reagent/method blank consists of reagents specific to the method that are carried through clean-up and analysis. Ideally, the concentration of an analyte in the blank is below the reporting limit of that analyte.

Calibration Check Standards – are pre-prepared from the same solution and are used to confirm linearity of the initial calibration curve. Acceptance must be within predicted limits.

Laboratory Analysis

Laboratory Duplicates - samples prepared by dividing a field sample into two or more aliquots, then analysed separately. Duplicate samples are considered to be two replicates. Replicate samples should ideally be representative of the originating sample, but in many cases this is not practical due to the nature of the sample; hence the analysis of replicate samples provide an indication of the effect of sample matrix variability on precision, in addition to assessing analytical precision.

Matrix Spikes - are field samples to which predetermined concentrations of analytes have been added. The matrix spike (MS) is taken through the entire analytical procedure and the percent recovery of each analyte is calculated as follows:

Percent Recovery = $X/T \ge 100\%$

where, X = the observed value of measurement; and

T = "true " value (value of primary sample with no spiking matrix added).

Percent recovery values provide an indication of the effect of sample matrix on the accuracy of the analysis, in addition to analytical accuracy.

Surrogates - are organic compounds which are similar to analytes of interest in chemical composition, extraction, and chromatography, but which are not normally found in field samples. These compounds are spiked into all sample aliquots prior to preparation and analysis. Percent recoveries are calculated for each surrogate, providing an indication of analytical accuracy including unusual matrix effects and gross sample processing errors.

The following QC checks are to be performed at a frequency of 1 in 20 field samples or greater for volatile, semi-volatile and metal analytes:

- Reagent/method blanks;
- Calibration check standards;
- Laboratory duplicates;
- Control spikes;
- Laboratory Control Samples; and
- MS/MSDs (metals only).

With respect to routine organics analysis, ALS use spiked samples because of the difficulty in obtaining appropriate, matrix-matched, certified reference materials for all target analytes. ALS QC protocols require the use of an Independent Calibration Verification standard (ICV) for all methods. An ICV is prepared from target analytes obtained from an independent source from those used for calibration standards or as spiking solutions for laboratory control samples and matrix spikes. This provides an indirect independent check of the accuracy of laboratory control and matrix spikes.

Laboratory Analysis

6.4.2 Data Handling

All analytical data generated by the analytical laboratory will be appropriately reduced and undergo comprehensive validation prior to reporting. Records and numerical calculations will be legible and complete enough to permit reconstruction of the work by a qualified individual other than the originator.

The originating analyst will reduce and validate a given data package to ensure that:

- Holding times have been met;
- Appropriate standard operating procedures have been followed;
- Field sample results are correct and complete (if applicable);
- QC check sample results are correct and complete;
- QC check sample results are within established control limits and data quality objectives; and
- Documentation is complete.

If the originating analyst finds that the validity of data is in doubt due to non-conformance with the above checklist, then the data is flagged and appropriate corrective procedures are initiated.

Once the originating analyst has reduced and validated the data package, it is then passed onto the Document Control/Quality Assurance Officer, Laboratory Manager, or other appropriately qualified senior personnel for independent review.

A NATA approved signatory signs and releases the work reported.

The requirements of the reports include the following:

- The format of the final report is in full accordance with NATA requirements for Chemical Testing, including the provision of a NATA stamp on the covering page if appropriate;
- A summary table of sample no., matrix, date sampled, date received, date prepared/extracted and date analysed is completed;
- All field sample results for each type of sample matrix, as listed on the CoC, are reported collectively on separate tables noting URS sample ID, Laboratory ID and Laboratory sample Batch No;
- All QA check results are reported. Each type of sample matrix, as listed on the CoC, are reported collectively on separate tables;
- All water matrix results are expressed as mg/L or μ g/L;
- All solid matrix results are expressed as mg/kg or µg/kg (dry weight);
- Full reference to analytical procedures used are stated;

Laboratory Analysis

- Modifications to procedures performed outside the requirements of this SAP have been stated;
- Non-conformance to any of the analytical requirements of this SAP are clearly stated;
- A key to abbreviations is provided; and
- Analyte nomenclature remains consistent throughout the entire project.

If complete, the final report is then signed by the appropriate NATA signatory and submitted to URS.

In the event that a preliminary test report is issued, the degree to which the data has been validated by the laboratory must be clearly indicated, and the final test report must contain an appropriate reference to the original one.

If, after the issuing of a report, data are found to be invalid, the original report must be withdrawn and replaced by one marked "Replacement for Report No", with a version number clearly marked.

6.4.3 Data Validation

The primary objective of the data validation process is to ensure that the data reported can be used to achieve the project objectives.

The validity of all analytical data reported will be assessed by URS by critical review of the QC check sample results. This will be performed in general accordance with guidance by US EPA guidelines and NODG as presented in the document "National Functional Guidelines For Organic Data Review, Multimedia, Multiconcentration (OLMO 1.0) and Low Concentration Water (OLCO 1.0), June 1991", where appropriate (USEPA, 1991).

ANZECC/ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand, October 2000.

Barnes, R.K., Batley, G.E. and Sharp, J.H (1982). Heavy metal enrichment in the surface microlayer of the Nepean-Hawkesbury river system. *Australian Journal of Marine and Freshwater Research*, **33**, 917-930.

Birch, G.F., Shotter, N. and Steetsel, P. (1998). The environmental status of Hawkesbury River sediments. *Australian Geographical Studies*, **36**, 37-57.

Bourgues, S., Carpenter, M., Coade, G., Scanes, P. and Koop, K. (1998). Oxygen and nutrient fluxes quantified under experimental conditions on sediment from deep and shallow sites in Berowra Creek. Environmental Protection Authority NSW.

Coastal & Marine Geosciences (1998). Berowra Creek Estuary Process Study Technical Report : Sediment characteristics and processes. Coastal & Marine Geosciences Geological and Environmental Consultant, Sydney.

EPA (1996). A baseline contaminant survey of the Hawkesbury River estuary: December 1990-January 1991. Technical Report EPA 94/24, April 1996.

Hardiman, S. and Pearson, B. (1995). Heavy metals, TBT and DDT in the Sydney Rock Oyster (*Saccostrea commercialis*) sampled from the Hawkesbury River estuary, NSW, Australia. *Marine Pollution Bulletin*, **30**, 563-567.

Hayes, W.J. and Buckney, R.T. (1998). Chemical characteristics of sediments and interstitial waters in some small Hawkesbury Sandstone freshwater streams of the Sydney area. *Lakes & Reservoirs: Research and Management*, **3**, 165-178.

Mann, R.A., Jung, R.F. and Huang, B. (1996). Contaminants in sediments from Calabash Point, Berowra Creek. CSIRO Division Coal and Energy Technology, Investigation Report CET/IR510.

Markich, S.J. and Brown, P.L. (1998). Relative importance of natural and anthropogenic influences on the fresh surface water chemistry of the Hawkesbury-Nepean River, south-eastern Australia. *Science of the Total Environment*, **217**, 201-230.

O'Donnell, M. (1995). Heavy metal contamination in the Hawkesbury River between Windsor and Wisemans Ferry. Unpubl. B.Sc. (Hons) thesis, Department of Geology and Geophysics, The University of Sydney, Sydney.

Parker, C. (1992). Heavy metals in the sediments of the Hawkesbury Valley: an assessment of the spatial and temporal distribution. Unpubl. B.Sc. (Hons) thesis, Department of Geography, The University of Sydney, Sydney.

Pik, A.J., Eckert, J.M. and Williams, K.L. (1982). Speciation of iron, copper and zinc in the Hawkesbury River. *Australian Journal of Marine and Freshwater Research*, **33**, 971-977.

References

Shotter, N. (1994). Anthropogenic impacts on the central Hawkesbury River, part of a large NSW estuary. Unpubl. B.Sc. (Hons) thesis, Department of Geology and Geophysics, The University of Sydney, Sydney.

Simonovski, J., Owens, C. and Birch, G. (2003). Heavy metals in sediments of the Upper Hawkesbury-Nepean River. *Australian Geographical Studies*, **41**, 196-207.

Taylor, S.E. (2000). The source and remobilisation of contaminated sediment in Port Jackson, Australia. Unpubl. PhD thesis, Department of Geology and Geophysics, The University of Sydney, Sydney

University of New South Wales (UNSW) (2002). School of Civil Engineering, Water Research Laboratory, Brooklyn Estuaries Processes Study – Working Paper 3.

Limitations

URS Australia Pty Ltd (URS) has prepared this document in accordance with the usual care and thoroughness of the consulting profession for the use of Hornsby Shire Council and their consultants and only those third parties who have been authorised in writing by URS to rely on the document. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this document. It is prepared in accordance with the Proposal dated 29 August 2006 and was modified to include the outcomes of the meeting between Peter Coad, Kristy Guise, Carsten Matthai and Stuart Taylor at the URS office in North Sydney on 21 November 2006.

The methodology adopted and sources of information used by URS are outlined in this document. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this document as provided to URS was false.

This Sampling and Analysis Plan (SAP) for sediment investigations has been developed in accordance with the scope of works provided by Hornsby Shire Council and was prepared between 3 November and 22 November 2006. The SAP is based on the conditions encountered and information reviewed at the time of preparation.

This document should be read in full. No responsibility is accepted for use of any part of this document in any other context or for any other purpose or by third parties. This document does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Opinions and recommendations contained in this plan are based upon data provided by representatives of Hornsby Shire Council, information gained during a literature review and a project inception meeting on 6 October 2006 and information provided from government authorities' records and other third parties. This approach reflects current professional practice for sediment investigations.

This investigation addresses the likelihood of hazardous substance contamination resulting from past and current known uses of the study area. Given the limited and mutually agreed scope of work, URS does not guarantee that hazardous materials do not exist in an area of sediment. Similarly, an area of sediment which appears to be unaffected by hazardous materials at the time of our assessment may later, due to natural phenomena or human intervention, become contaminated.

Subsurface conditions can vary across a particular site and cannot be explicitly defined by these investigations. It is unlikely therefore that the results and estimations expressed in this document will represent the extremes of conditions within the site or the conditions at any location removed from the specific points of sampling. Subsurface conditions including contaminant concentrations can also change in a short time.

The information in this document is considered to be accurate at the date of issue and is in accordance with known conditions at the site.

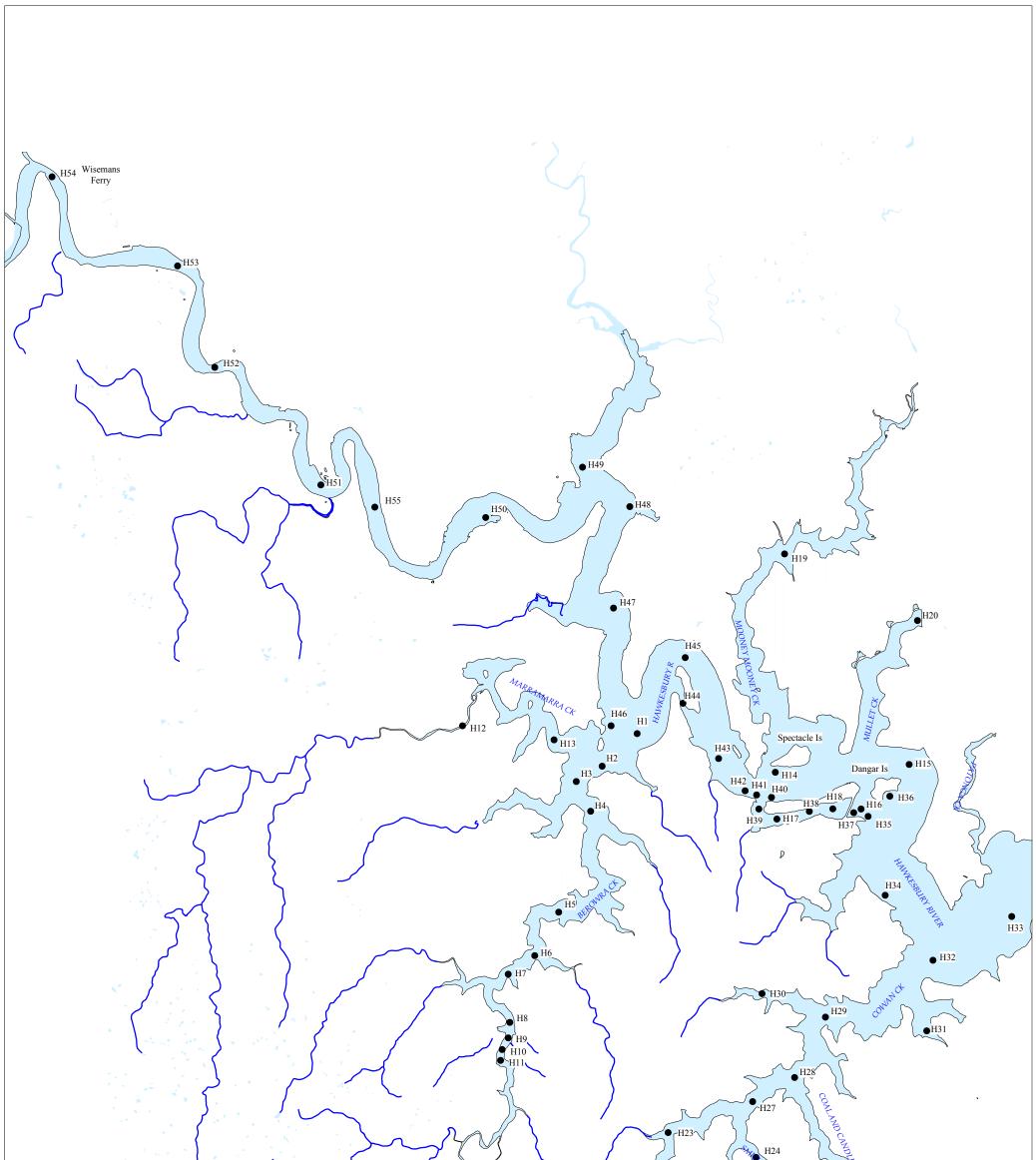
Limitations

This document and the information contained herein should only be regarded as validly representing the site conditions at the time of the investigation unless otherwise explicitly stated in a preceding section of this document.

J:\JOBS\43217595\HORNSBY SHIRE COUNCIL - SED & ANTIFOUL STUDY\DELIVERABLES\SED & ANTIFOUL FINAL REPORT\APP B - ANTIFOUL STUDY (STAGE 2) -REPORT\APP B - SEDIMENT STUDY (STAGE 1) - SAP\STAGE 1 SEDIMENT STUDY SAP FINAL 22-11-06.DOC\5-OCT-07

Sample Location ID	Previous Sample Location ID	Longitude	Latitude	Location Description	Notes
H1	BCVC1	329090	6289010	Hawkesbury River south of Bar Point	Resampling location from Coastal & Marine Geosciences (1998)
H2	BCVC2	328454	6287982	Berowra Creek south of Bar Island	Resampling location from Coastal & Marine Geosciences (1998)
H3	BCVC3	327668	6287327	Berowra Creek west of Berowra Point	Resampling location from Coastal & Marine Geosciences (1998)
H4	BCVC4	328052	6286683	Berowra Creek south of Berowra Point	Resampling location from Coastal & Marine Geosciences (1998)
H5	BCVC5	327149	6283864	Berowra Creek west of Bujwa Creek	Resampling location from Coastal & Marine Geosciences (1998)
H6	BCVC6	326438	6282596	Berowra Creek north of Oaky Point	Resampling location from Coastal & Marine Geosciences (1998)
H7	BCVC7	325705	6282049	Berowra Creek east of Calabash Bay	Resampling location from Coastal & Marine Geosciences (1998)
H8	BCVC8	325846	6280688	Berowra Creek east of Crossland Bay	Resampling location from Coastal & Marine Geosciences (1998)
H9	BCVC9	325761	6280295	Berowra Creek south of Crossland Bay ferry crossing	Resampling location from Coastal & Marine Geosciences (1998)
H10	BCVC10	325587	6279982	Berowra Creek south of Crossland Bay ferry crossing	Resampling location from Coastal & Marine Geosciences (1998)
H11	BCVC11	325560	6279726	Berowra Creek south of Crossland Bay ferry crossing	Resampling location from Coastal & Marine Geosciences (1998)
H12	MCAH1	323843	6288976	Marramarra Creek	Resampling location from Coastal & Marine Geosciences (1998)
H13	MCAH2	322175	6289012	Mouth of Marramarra Creek west of Bar Island	Resampling location from Coastal & Marine Geosciences (1998) moved to mouth of Marramarra Creek
H14	Site 5	TBD	TBD	Hawkesbury River south of Spectacle Island	Resampling location from UNSW (2002)
H15	Site 6	TBD	TBD	Hawkesbury River northeast of Dangar Island	Resampling location from UNSW (2002)
H16	Site 7	TBD	TBD	Hawkesbury River southwest of Dangar Island	Resampling location from UNSW (2002)
H17	Site 8	TBD	TBD	Hawkesbury River Sanbrook Inlet West	Resampling location from UNSW (2002)
H18	Site 9	TBD	TBD	Hawkesbury River Sanbrook Inlet East	Resampling location from UNSW (2002)
H19	Site 1	TBD	TBD	Mooney Mooney Creek	Resampling location from UNSW (2002)
H20	Site 3	TBD	TBD	Mullet Creek	Resampling location from UNSW (2002)
H21	NA	TBD	TBD	Cowan Creek Bobbin Head	New sampling location
H22	NA	TBD	TBD	Cowan Creek Apple Tree Bay	New sampling location
H23	NA	TBD	TBD	Cowan Creek east of Waratah Bay	New sampling location
H24	NA	TBD	TBD	Cowan Creek Smiths Creek	New sampling location
H25	NA	TBD	TBD	Cowan Creek Akuna Bay	New sampling location
H26	NA	TBD	TBD	Cowan Creek northwest of Akuna Bay	New sampling location
H27	NA	TBD	TBD	Cowan Creek north of Smiths Creek	New sampling location
H28	NA	TBD	TBD	Cowan Creek northeast of Cottage Point	New sampling location
H29	NA	TBD	TBD	Cowan Creek north of Cowan Point	New sampling location
H30	NA	TBD	TBD	Cowan Creek Jerusalem Bay (north of Pinta Bay)	New sampling location
H31	NA	TBD	TBD	Cowan Creek Refuge Bay	New sampling location
H32	NA	TBD	TBD	Cowan Creek north of Challenger Head	New sampling location
H33	NA	TBD	TBD	Hawkesbury River Walker Point/Flint & Steel Point	New sampling location
H34	NA	TBD	TBD	Hawkesbury River northwest of Gunyah Point	New sampling location
H35	NA	TBD	TBD	Hawkesbury River east of Flat Rock Point	New sampling location
H36	NA	TBD	TBD	Hawkesbury River south of Dangar Island	New sampling location
H37	NA	TBD	TBD	Hawkesbury River east of Long Island Jetty	New sampling location
H38	NA	TBD	TBD	Hawkesbury River south of Sanbrook Inlet (centre)	New sampling location
H39	NA	TBD	TBD	Hawkesbury River south Kangaroo Point	New sampling location
H40	NA	TBD	TBD	Hawkesbury River north of Long Island (west)	New sampling location
H41	NA	TBD	TBD	Hawkesbury River north of Kangaroo Point	New sampling location
H42	NA	TBD	TBD	Hawkesbury River west of Hawkesbury Road Bridge	New sampling location
H43	NA	TBD	TBD	Hawkesbury River southwest of Peat Island	New sampling location
H44	NA	TBD	TBD	Hawkesbury River southeast of Prickly Point	New sampling location
H45	NA	TBD	TBD	Hawkesbury River north of Milson Island	New sampling location
H46	NA	TBD	TBD	Hawkesbury River east of Fishermans Point	New sampling location
H47	NA	TBD	TBD	Hawkesbury River northeast of Pumpkin Point	New sampling location
H48	NA	TBD	TBD	Hawkesbury River west of Marlows Creek	New sampling location
H49	NA	TBD	TBD	Hawkesbury River south of Triangle (no name)	New sampling location
H50	NA	TBD	TBD	Hawkesbury River northeast of Haycock Reach	New sampling location
H51	NA	TBD	TBD	Hawkesbury River west of Sentry Box Reach	New sampling location
H52	NA	TBD	TBD	Hawkesbury River (no name)	New sampling location
H53	NA	TBD	TBD	Hawkesbury River (no name)	New sampling location
	NA	TBD	TBD	Hawkesbury River south of Wisemans Ferry	New sampling location
H54					

Table 1. Proposed Sampling Locations


*Map Grid of Australia MGA94 (Zone 55); TBD = To be determined

Figure

J:\JOBS\43217595\HORNSBY SHIRE COUNCIL - SED & ANTIFOUL STUDY\DELIVERABLES\SED & ANTIFOUL FINAL REPORT\APP B - ANTIFOUL STUDY (STAGE 2) - REPORT\APP B - SEDIMENT STUDY (STAGE 1) - SAP\STAGE 1 SEDIMENT STUDY SAP FINAL 22-11-06.DOC\5-OCT-07

Source:	HI22 HI21	$\frac{0 \qquad 2 \qquad 4}{\text{kilometers}}$
Client Hornsby Shire Council	Project SEDIMENT AND ANTIFOUL MONITORING STUDY	Title Proposed Sample Locations
	Drawn: CM Approved: DRAFT Date: 22-11-06 Job No: 43217595 File No: Proposed Sampling 3.wor	Figure: 1

Appendices

Appendix C - Antifoul Study (Stage 2) - Sampling and Analysis Plan

SAMPLING AND ANALYSIS PLAN

Sediment and Antifoul Monitoring Program – Stage 2 Antifoul Study

Prepared for

Hornsby Shire Council

20 March 2007

Author:	Dr Carsten Matthai Senior Environmental Scientist	URS Australia Pty Ltd Level 3, 116 Miller Street North Sydney, NSW 2060 Australia Tel: 61 2 8925 5500 Fax: 61 2 8925 5555		
Project Manager:	Dr Carsten Matthai Senior Environmental Scientist			
Project Director:	Stuart Taylor Principal Environmental Scientist	Date: Reference: Status:	20 March 2007 Stage 2 Sediment Study Final SAP 20-3-07.doc Final	

1	Introduction	1-1			
	 Background Scope of Sampling and Analysis Plan Objectives 	1-1 1-1 1-2			
2	Background	2-1			
	2.1 Effects of TBT and Antifouling Paint Booster Biocides	2-1			
	2.2 Antifoul Study (Stage 2) – Sampling Locations	2-2			
	2.3 Contaminants of Potential Concern	2-3			
3	Project Organisation and Responsibilities				
	3.1 Project Director – Stuart Taylor	3-1			
	3.2 Project Manager – Carsten Matthai	3-1			
4	Scope Of Work				
	4.1 Introduction	4-1			
	4.2 Sampling Site Location	4-1			
	4.3 Sampling Contingency Plans	4-2			
	4.4 Sediment Subsampling	4-2			
	4.5 Sediment Analyses and Analytical Detection Limits	4-2			
5	Sediment Sampling Methodology	5-1			
	5.1 Documentation of Field Activities	5-1			
	5.1.1 General Field Activities Documentation	5-1			
	5.1.2 Sampling Containers	5-1			
	5.1.3 Sample Labelling	5-2			
	5.1.4 Chain of Custody Protocols	5-2			
	5.1.5 Decontamination	5-3			
	5.2 Field QA/QC Samples5.3 Surveying	5-3 5-3			
	5.4 Sampling Date	5-3			
6	Laboratory Analysis	6-1			
	6.1 Laboratory Analysis Program	6-1			
	6.2 Analytical Testing Program	6-1			
	6.3 Sample Handling, Preservation and Storage	6-1			
	6.3.1 Laboratory Receipt of Samples	6-1			
	6.3.2 Pre-and Post-analysis Storage	6-2			
	6.4 Analytical Quality Assurance/Quality Control (QA/QC)	6-2			
	6.4.1 Laboratory QA/QC Samples	6-2			
	6.4.2 Data Handling	6-4			
	6.4.3 Data Validation	6-5			
7	References	7-1			

J:\JOBS\43217595\HORNSBY SHIRE COUNCIL - SED & ANTIFOUL STUDY\DELIVERABLES\SED & ANTIFOUL FINAL REPORT\APP B - ANTIFOUL STUDY (STAGE 2) - REPORT\APP C - SEDIMENT STUDY (STAGE 2) - SAP\STAGE 2 SEDIMENT STUDY FINAL SAP 20-3-07.DOC

Contents

8	Limitations	 R_1
0		U- I

J:\JOBS\43217595\HORNSBY SHIRE COUNCIL - SED & ANTIFOUL STUDY\DELIVERABLES\SED & ANTIFOUL FINAL REPORT\APP B - ANTIFOUL STUDY (STAGE 2) -REPORT\APP C - SEDIMENT STUDY (STAGE 2) - SAP\STAGE 2 SEDIMENT STUDY FINAL SAP 20-3-07.DOC

Table

Table 1 Sampling Locations

Figure

Figure 1 Sampling Locations

J:\JOBS\43217595\HORNSBY SHIRE COUNCIL - SED & ANTIFOUL STUDY\DELIVERABLES\SED & ANTIFOUL FINAL REPORT\APP B - ANTIFOUL STUDY (STAGE 2) -REPORT\APP C - SEDIMENT STUDY (STAGE 2) - SAP\STAGE 2 SEDIMENT STUDY FINAL SAP 20-3-07.DOC

1.1 Background

To foster better management of estuaries, the New South Wales (NSW) Government formulated an Estuary Management Policy that advocates the integrated, balanced, responsible and ecologically sustainable use of the State's estuaries. The Estuary Management Policy is defined in the Estuary Management Manual (NSW Government, 1992) and outlines a structured management process leading to the implementation of Estuary Management Plans for estuaries in NSW. Estuary Management Plans encompass all values and uses of the estuary, along with the principles of ecologically sustainable development and total catchment management.

The Estuary Management Manual recommends an eight step process to prepare and implement an Estuary Management Plan, as follows:

- 1) Form an estuary management committee;
- 2) Assemble existing data (data compilation study);
- 3) Undertake estuary processes study;
- 4) Undertake estuary management study;
- 5) Prepare draft estuary management plan;
- 6) Public review of draft plan;
- 7) Adopt and implement estuary management plan; and
- 8) Monitor and review the management process as necessary.

In compliance with step seven, the Berowra Creek Estuary Management Plan was implemented in 2000. The Brooklyn Estuary Management Plan was completed in December 2006. The need to establish a Sediment Study (Stage 1) and Antifoul Study (Stage 2), to establish the level of anthropogenic contamination within the estuaries of Hornsby Shire, was identified in the Berowra Creek Estuary Process Study (Coastal and Marine Geosciences, 1998), Brooklyn Estuary Process Study (University of New South Wales, 2002) and the Berowra Creek and Brooklyn Estuary Management Plans.

The Stage 1 Sediment Study was completed between December 2006 and February 2007 and the outcomes of the sediment investigation were presented at an Estuary Management Committee Meeting at Hornsby Shire Council on 8 February 2007.

1.2 Scope of Sampling and Analysis Plan

This Sampling and Analysis Plan (SAP) was developed following consultation with Hornsby Shire Council and stakeholders following the Management Committee Meeting at Hornsby Shire Council on 8 February 2007 and a follow-up meeting with Hornsby Sire Council staff on 21 February 2007. The SAP

Introduction

also presents specific quality assurance and quality control (QA/QC) details to be employed during the investigation and it covers the following aspects of the investigation:

- Scope of work;
- Rationale for selection of sampling locations;
- Brief description of sampling locations;
- Identification of contaminants of potential concern (COPC);
- Project organisation and responsibilities;
- Field methods and procedures including:
 - Occupational health and safety (OH&S) procedures;
 - Contingency plan;
 - Sediment sampling equipment;
 - Sample location;
 - Equipment decontamination; and
 - Field documentation.
- Laboratory analytical program including:
 - NATA-accredited Laboratory to be used;
 - Analytical testing program, including detection limits (LORs);
 - Sample handling, preservation and storage;
 - Analytical QA/QC and data validation; and
 - Data management procedures.

1.3 Objectives

The proposed sediment sampling will augment the previous geochemical sediment sampling program conducted during the Stage 1 Sediment Study, which was completed between December 2006 and February 2007, in addition to the work completed as part of the Berowra Creek Estuary process Study (1998) and the Brooklyn Estuary Process Study (2002). The Stage 2 Sediment Study has the following objectives:

Introduction

- Direct assessment of commercially available antifouling products and document current • research;
- Assess whether the use of antifouling products has resulted in contamination of sediment in • the study area;
- Identify which contaminants are present in sediment due to the use of antifouling products; •
- Establish baseline data, and compare to recognised standards (where available), the level of • contamination in sediments resulting from the use of antifouling products in the study area; and
- Provide recommendations and remedial management actions based on results arising from • the objectives above.

In addition, the three sampling locations adjacent to the proposed Sewage Treatment Plant (STP) at locations H40, H41 and H42 will be sampled and analysed for the same suite of analytes as the 52 Stage 1 Sediment Study samples.

Following the discussions during the meeting on 21 February 2007, sediment samples from three additional sample locations (H3, H5 and H7) will be analysed for silver (one QA/QC field duplicate sample is recommended).

2.1 Effects of TBT and Antifouling Paint Booster Biocides

The need for effective antifoulants, which prevent the settlement and growth of marine organisms on submerged structures, such as buoys, fish cages and ship's hulls, is recognised universally (Evans et al., 2000; Konstantinou and Albanis, 2004). For many years, tributyltin (TBT) was the most widely used active ingredient in paint formulations. However, use of TBT has been regulated internationally since 1990 due to its severe impact on the aquatic ecosystem (Fent, 1996) and the demonstrated effects of TBT on the disruption of the endocrine system by mimicking or inhibiting the action of gonadal steroid hormones, oestradiol and testosterone (Makita and Omura, 2006).

Prolonged release of TBT from ship-bottom coatings has resulted in the imposition of male sexual characteristics upon female gastropods, or imposex, a phenomenon which was first described by Blaber (1970) in the United Kingdom. Imposex in marine gastropods has subsequently been linked to the exposure of these benthic biota to TBT in aquatic systems worldwide (e.g. Smith, 1981a,b,c; Santos et al., 2004). Recognition of this cause and effects relationship ultimately resulted in a global ban of TBT. The decline in the occurrence of imposex following worldwide bans has been used as a biomarker and biological indicator for environmental monitoring of TBT since the introductions of these bans in countries worldwide (Axiak et al., 2003).

Restrictions on the use of TBT-based antifouling paints were implemented in New South Wales (NSW) in 1989, first on small vessels under 25 m length and then on larger vessels, which have been allowed the continuing use of TBT-based antifouling paints, as long as the maximum leaching rate is $<5 \ \mu g \ cm^{-2} \ d^{-1}$ (Moore, 1988). However, despite the partial ban on the use of TBT in Australia, a survey of imposex in *Thais orbita* (Neogastropoda) along the NSW coast found imposex was still widespread 10 years after the introduction of the ban, in particular within harbour/bay areas, where contamination "hotspots" are still present and where physical remobilization and dispersion processes may be less pronounced compared to high-energy coastal areas (Gibson and Wilson, 2003).

Copper-based antifouling paints, particularly those that continually erode (ablating antifoulings) have been widely used since the banning of tributyltin and represent a source of Cu to sediment (Taylor, 2000). The Stage 1 Sediment Study has shown that marinas are a possible source of trace metal contaminants to the estuaries as antifouling is applied and removed from vessels on slipways.

An additional aspect of the potential environmental impact of antifouling products for use in boating and marine infrastructure is the use of organic booster biocides in antifouling paints in addition to copper, which have replaced TBT-based coatings. This may represent additional potential for toxic effects as a result of the synergistic interactions between various biocides used in these alternative products (Evans et al., 2000). Commonly used biocides in antifouling paints following the introduction of the ban on TBT include Diuron, Chlorothalonil, Irgarol and Dichlofluanid, although other compounds have also been studied (e.g. Sea-nine 211, zinc pyrithione, TCMS (2,3,3,6-tetrachloro-4-methylsulfonyl) pyridine, TCMTB [2-(thiocyanomethylthio) bezothiazole], and zineb). These compounds have shown to be present in increasing concentrations in waters and sediments in coastal environments in countries worldwide, including Australia (Konstantinou and Albanis, 2004).

Diuron is used as a herbicide in land-based applications and the presence of this compound in sediment may not be entirely related to antifouling products.

There are currently limited data available on the potential ecotoxicological effects of the increasingly widespread use of organic booster biocides in the aquatic environment, although a recent review by Konstantinou and Albanis (2004) suggests that alternative antifouling products, which are based on copper metal oxides and organic biocides require continued research regarding potential environmental effects in water and sediments and ecotoxicity in biota. The monitoring, behaviour and toxicity of degradation products of these compounds should be considered in establishing criteria for the occurrence, fate and effects of organic antifouling paint booster biocides.

2.2 Antifoul Study (Stage 2) – Sampling Locations

The sampling locations were selected based on the outcomes of the Stage 1 Sediment Study. It should be noted that during the Stage 2 sampling, TBT is the primary analyte of potential concern, although other organic contaminants analysed at Ultra Trace level of detection are proposed to assess the presence of anthropogenic contamination. In addition, the other antifoul-related analytes that are indicators of post-TBT restriction era contamination are Diuron and, to a lesser extent, Chlorothalonil, Irgarol and Dichlofluanid.

The assessment of historical inputs of anthropogenic contaminants to the Hawkesbury River System sediments and an evaluation of data from previous investigations, in particular from the Stage 1 Sediment Study, the Brooklyn Estuary Process Study (2002) and the Berowra Creek Estuary Process Study (1998), has demonstrated that surficial sediments in the Lower Hawkesbury River System are enriched in some contaminants and that sediments at some locations exceeded the ANZECC/ARMCANZ (2000) sediment quality guideline values.

Based on the outcomes of the Stage 1 Sediment Study, 16 of the 52 sampling locations were selected for the re-sampling of surficial sediments and additional geochemical analysis. The 16 sampling locations are:

- Upper Berowra Creek (H7, H8, H9, H10)
- Cowan Creek (H21 Bobbin Head marina, H22 Apple Tree Bay boat ramp, H23 Waratah Bay, H24 - Smiths Creek, H25 – Akuna Bay marina slipway, H26 - Akuna Bay marina refuelling station, H28 – Cottage Point kiosk, H31 – Refuge Bay)
- Sandbrook Inlet (the Gut) (H17, H18, H38)
- Brooklyn (H37)

The rationale and level of priority for the selection of each of these 16 sample locations is briefly summarized below:

Background

H7: No ANZECC/ARMCANZ exceedences, slight enrichment above regional baseline in Berowra Creek – Medium Priority;

H8: ANZECC/ARMCANZ exceedence of Pb, enrichment above regional baseline in Berowra Creek – Medium Priority;

H9: ANZECC/ARMCANZ exceedence of Pb, Cu, marina location, High Priority;

H10: ANZECC/ARMCANZ exceedence of Pb, Cu, in vicinity of marina, High Priority;

H17: ANZECC/ARMCANZ exceedence of As, Sandbrook Inlet location, enrichment of metals following normalization, High Priority;

H18: ANZECC/ARMCANZ exceedence of As, Sandbrook Inlet location, enrichment of metals following normalization, High Priority;

H21: ANZECC/ARMCANZ exceedence of Cu, Pb, Zn, Hg, Cowan Creek Bobbin Head at marina, High Priority;

H22: ANZECC/ARMCANZ exceedence of Cu, Pb, Hg, Cowan Creek Apple Tree Bay, High Priority;

H23: ANZECC/ARMCANZ exceedence of Pb, Cowan Creek east of Waratah Bay, enrichment of metals following normalization, Medium Priority;

H24: ANZECC/ARMCANZ exceedence of Pb, Cowan Creek – Smiths Creek, slight enrichments of metals (Pb, Cu) following normalization, Medium Priority;

H25: ANZECC/ARMCANZ exceedence of Cu, Akuna Bay at marina, High Priority;

H26: ANZECC/ARMCANZ exceedence of Cu, Pb, Hg, Akuna Bay at marina, High Priority;

H28: ANZECC/ARMCANZ exceedence of Cu, Pb, Hg, Cowan Creek Cottage Point, enrichment of metals following normalization, Medium Priority;

H31: ANZECC/ARMCANZ exceedence of As, Cowan Creek - Refuge Bay non-marina and high boating activity location, High Priority

H37: ANZECC/ARMCANZ exceedence of Pb, Hg, marina, High Priority;

H38: ANZECC/ARMCANZ exceedence of As, Sandbrook Inlet, High Priority;

2.3 Contaminants of Potential Concern

Sediment samples collected during the Antifoul Study (Stage 2) sampling will be analysed for the following:

• TBT;

- Polychlorinated Biphenyls Ultra Trace limits of reporting;
- Polycyclic Aromatic Hydrocarbons (24 analytes) Ultra Trace limits of reporting;
- Organochlorine Pesticides Ultra Trace limits of reporting; and
- Organophosphate Pesticides Ultra Trace limits of reporting;

Four samples from locations H37 (Brooklyn), H9 (Berowra Creek Marina), H38 (Sandbrook Inlet) and H31 (Refuge Bay) will be analysed for antifouling booster biocides:

- Diuron and Chlorothalonil (quantitative analysis);
- Irgarol and Dichlofluanid (semi-quantitative analysis).

Although additional sampling locations could have been included for the analysis of these antifouling booster biocides (i.e. H21 – Bobbin Head marina and H26 – Akuna Bay marina), these locations are outside the Hornsby Shire Council LGA and the limited resources have been directed toward the determination of the concentrations of these analytes in sediments sampled at locations H9, H31, H37 and H38.

The three sampling locations adjacent to the proposed Sewage Treatment Plant (STP) (locations H40, H41 and H42 will be analysed for:

- TKN, TOC, NOX;
- Ca, Mg, Be, Al, V, Cr, Mn, Fe, Co, Cu, Zn, As, Sr, Ni, Ba, Pb, Cd;
- Polychlorinated Biphenyls;
- Polycyclic Aromatic Hydrocarbons;
- Organochlorines;
- Organophosphates;
- Total petroleum hydrocarbons (TPH) (C_6 - C_{36}); and
- BTEX.

Grainsize in four fractions (0.063 mm; 0.063 mm-0.25 mm; 0.25 mm-2 mm; >2 mm) will be determined.

Organic compounds will be analysed for standard limits of reporting and not ultratrace levels.

One QA/QC field duplicate sample will be collected and also analysed for the above suite of analytes.

Sediment samples from three locations (H3, H5 and H7) in Berowra Creek will be collected and analysed for Ag only.

The project organisation identifies the reporting structure and responsibilities of individuals involved in the project. The roles of responsible individuals under this SAP are described below:

3.1 **Project Director – Stuart Taylor**

The Project Director has the overall responsibility for the project. The Project Director monitors the project work and provides supervision and support to the Project Manager (defined below). Specific responsibilities of the Project Director include:

- Ensure that contracting and risk mitigation requirements are met, that the work is conducted in accordance with the terms of the contract, and that contractual changes are formally approved;
- Ensure that the Project Manager and staff are technically and professionally qualified, have adequate relevant experience, and represent sufficient resources to meet project objectives;
- Review project work and deliverables at least at designated project milestones;
- Ensure that appropriate peer reviews are conducted;
- Ensure that project files are established and that staff orientations are conducted;
- Ensure that project deliverables are provided on time and within budget; and
- Establish and maintain communications with the client project manager and assure that the objectives of the project, as prescribed by the contract terms, are met to Hornsby Shire Council's satisfaction.

3.2 Project Manager – Carsten Matthai

The Project Manager reports to the Project Director and has primary responsibility for all aspects of the project including meeting the needs of Hornsby Shire Council. Specifically, responsibilities include the quality of the work product, schedule and budget control, asset management, and communications with staff and superiors. Specific duties of the Project Manager include:

- Implement contracting and risk mitigation requirements and determine if the services rendered are consistent with the terms of the contract;
- Determine that all contractual terms, including changes in scope, schedule and budget are formally agreed to by authorised representatives of Hornsby Shire Council and that such agreements are documented in writing;
- Determine, in consultation with the Project Director, that qualified staff are assigned to the project and represent sufficient resources to meet project objectives;

- Conduct the project so that deliverables are of professional quality and formally reviewed at predetermined times by qualified staff;
- Expedite the work of Peer Reviewers involved in the project by formally communicating peer review schedules and providing the information required for peer reviews in a timely fashion;
- Establish and maintain project files; maintain written documentation of relevant contractual, financial and administrative transactions, work plan conformance, quality assurance conformance, deliverables submitted and other relevant technical and managerial data. Close the files upon completion of the project or of major project phases;
- Monitor schedules and budgets; provide notification to Hornsby Shire Council of requirements for budget or schedule adjustments before overruns have occurred and document justification for such changes;
- Maintain close communications with and be readily available to Hornsby Shire Council's representative to periodically assure that Hornsby Shire Council's objectives are being satisfactorily met within the terms of the contract;
- Review, in a timely manner, all invoices to verify charges and their conformance with contractual terms; communicate with Hornsby Shire Council concerning inquiries about invoices and interact with Accounting to facilitate collections; and
- Present deliverables and, subsequently, contact Hornsby Shire Council's representative to verify his/her understanding and ascertain his/her assessment of the work.

4.1 Introduction

This section of the SAP details the procedures to be used during the Stage 2 Antifoul Study of the sediments in the Hawkesbury River system. By defining the procedures to be used, it is possible to develop a uniform approach to the Antifoul Study (Stage 2) investigation and thereby, minimise potential impacts on the quality and representativeness of data collected.

The Antifoul Study will include the following:

1. The number of sampling locations for the Antifoul Study (Stage 2) would be reduced to 16 sampling locations, based on the prioritisation obtained from the Stage 1 Sediment Study. Surficial sediment samples will be collected using an Ekman grab sampler at 16 sampling locations (plus 2 additional QA/QC field replicates). One homogenized sample from the upper 10 cm of sediment will be analysed for the following:

- TBT; and
- Organic Contaminants (PCBs, PAHs (24 analytes), OC Pesticides, OP Pesticides) Ultra Trace limits of reporting.

In addition, four samples will be collected for the analysis of antifouling booster biocides (TBT-replacement products) from locations H37 (Brooklyn), H9 (Berowra Creek marina), H38 (Sandbrook Inlet) and H31 (Refuge Bay). These sampling locations were selected as a subset of the 16 sampling locations of the Stage 2 investigation. These samples will be analysed for:

- Diuron and Chlorothalonil (quantitative analysis);
- Irgarol and Dichlofluanid (semi-quantitative analysis analytical availability and cost to be confirmed)

4.2 Sampling Site Location

The scope of works for the Stage 2 Antifoul Study comprises the collection and analysis of sediment grab samples to a maximum sediment depth of 0.1 m depth at 16 locations, as defined in Section 2.2) (Figure 1). Sampling will be undertaken from a small motorized vessel provided by Hornsby Shire Council. Samples will be located with a GPS positioning accuracy of +/-5 m. The GPS unit will be provided by Hornsby Shire Council. The location and collection of samples in the field will be the responsibility of the URS field team comprising Dr Carsten Matthai and Kristy Guise and Peter Coad (Hornsby Shire Council).

One homogenised sample will be collected of the upper 0.1 m of sediment at each sampling location. Samples will be homogenized using stainless steel utensils and a stainless steel bowl and analysed for CoPC. Subsamples for antifoul booster biocide analysis will be collected at three of the 16 sampling

Scope Of Work

locations (i.e. H37 – Brooklyn marina petrol refuelling station; H38 - Sandbrook Inlet; H9 – Berowra Creek marina; H31 - Refuge Bay).

The sediment geochemical data will be displayed spatially on a GIS system (MapinfoTM) and the data will be screened against ANZECC/ARMCANZ (2000) sediment quality guideline values.

4.3 Sampling Contingency Plans

The sampling will be undertaken in the channels, creeks and embayments of the Lower Hawkesbury River, which is relatively protected during storms. However, in the case of adverse weather which may present an OH&S risk to field staff, sampling would be discontinued and rescheduled. It is likely that the sampling program will be completed over a period of one full day, weather permitting.

4.4 Sediment Subsampling

Grab samples collected during the Stage 2 Antifoul Study will be collected with a stainless steel tall Ekman grab sampler (dimensions: 0.15 m x 0.15 m x 0.225 m) wherever possible. A Ponar grab sampler may be required to sample sandy sediments at some locations. Sample management procedures on the sampling vessel include the careful collection of the sediment samples from the grab sampler, following the recovery of the sediment from the estuary floor. Essentially, all sample handling and processing will be performed to minimize contamination and sample mix-ups. The workspace on the boat will be washed down with ambient seawater to clean all surfaces and minimize dust contamination of samples. Nitrile gloves will be worn by the sampling personnel.

Subsampling will be performed using a stainless steel sampling spoon. The sampler, who is wearing nitrile gloves, will maintain utmost care in ensuring that no cross-contamination between samples is possible. Samples collected from each interval will be homogenised in a stainless steel bowl and then placed into appropriately cleaned and preserved containers provided by the laboratories (glass sampling containers with Teflon-lined lids). Sample containers will be filled with zero headspace and labelled immediately. Samples will then be stored in eskies on ice. All eskies will be filled to capacity and sealed with adhesive tape. A CoC form will be included in the esky. Following return to shore, the samples will be delivered to the laboratory within 48 hours of sampling for processing and analysis.

4.5 Sediment Analyses and Analytical Detection Limits

Whole sediment samples from locations outlined in Section 2.2 will be submitted to an independent NATA accredited laboratory, ALS Environmental (TBT and Organics) and NMI (organic booster biocide analyses), for analysis of the COPCs listed in Section 2.3. Samples for PAHs, OCPs, OPPs and PCBs will be analysed for Ultra Trace limits of reporting (PAH: 10-100 μ g/kg; OC Pesticides; 0.5 μ g/kg; OP Pesticides: 10 μ g/kg; PCB: 5 μ g/kg). All analytical methods are NATA accredited for all of the tests, except for the organic booster biocide analyses, some of which are semi-quantitative.

5.1 Documentation of Field Activities

5.1.1 General Field Activities Documentation

Bound field logbooks will provide the means for recording most field activity records and observations. The aim of the documentation within the field logbooks is to allow future reconstruction of field activities without relying on the memory of field team members. To supplement the information and data collected during sample collection and field testing, field data sheets may also be completed.

Items that will be recorded into the field logbook include:

- Sample collection method; and
- Health and safety documentation.

Field documentation will include, at a minimum, the following information as is applicable to the specific task at hand:

- Project name and number;
- Date, time, weather conditions;
- Personnel present;
- Type of sample;
- Sampling method;
- Sampling location description, ID and time of collection;
- Sample depth;
- Visual descriptions;
- Sample container type;
- Photograph number (where applicable); and
- Other information and observations.

The field logbook and the field data sheets will compile the field data collected during the investigation.

5.1.2 Sampling Containers

Containers for samples are cleaned and prepared by the laboratory. Glass jars for chemical analyses and plastic bags for grain size analyses will be provided by the analytical laboratory.

5.1.3 Sample Labelling

Each sample container will be clearly labelled and marked with ink in the field. Samples collected from each sampling location will have unique sample numbers.

Sample labels will include the following information:

- Sampling date;
- Sample point number/designation; and
- Comments, as required.

5.1.4 Chain of Custody Protocols

A chain of custody (CoC) record will be utilised by field personnel to document possession of all samples collected for chemical analysis. The CoC record may include, but is not limited to, the following information:

- Project name and number;
- Name(s) of sampler(s);
- Sample type, identification number and location;
- Date and time of collection;
- Number and type of containers;
- Required analyses;
- Preservatives; and
- Signatures documenting change of sample custody.

The esky containing the samples will be sealed with tape and secured with a signed custody seal. The custody seal will provide an indication of whether the cooler was opened by unauthorised personnel. The temperature that the samples were stored at following transit to the lab and upon receipt is noted on the CoC forms.

The original CoC record will accompany the samples to the analytical laboratory. A copy of the CoC record will be placed in the appropriate project file. Samples will be delivered to the laboratory within 48 hours of sample collection to ensure the specified holding times are met.

5.1.5 Decontamination

All sampling equipment and measurement equipment will be decontaminated before and after each use. In general, the principal decontamination objective is the decontamination of all equipment prior to arriving on-site, including the removal of encrusted materials by scraping and ambient seawater rinse.

5.2 Field QA/QC Samples

Field duplicate QA/QC samples will be collected for at least 10% of primary samples collected (i.e. two samples), except for the organic booster biocide analyses, which are partly analysed on a semiquantitative basis. Field duplicates, labelled QC1 and QC2, are samples that are prepared in the field by splitting a field sample, then submitting it to the laboratory as two independent samples. Field duplicates are used to measure the precision of the whole sampling and analysis process (sample collection, sample preparation and sample analysis). Significant variation in field duplicate results is often observed (particularly for solid matrix samples) due to sample heterogeneity. Field duplicates will be analysed for all analytes listed in Section 2.2 (TBT and organics).

5.3 Surveying

The sampling locations will be located using a global positioning system (GPS), provided by Hornsby Shire Council with an estimated accuracy of +/-5m.

5.4 Sampling Date

Sampling will be conducted from a small motorized boat provided by Hornsby Shire Council over a period of one full day on 26 March 2007 (with a second contingency date of 28 March 2008), but will be dependent on weather conditions at the time. The date and time of sampling, water depth, latitude and longitude and a description of the sediment type will be recorded in the field.

6.1 Laboratory Analysis Program

Only commercial analytical laboratories that are accredited with the National Association of Testing Authorities (NATA) for the project specific analyses will be used for the project. All analytical procedures performed by the laboratory (ALS) are NATA-accredited, except for the organic booster biocide analyses (performed by the National Measurement Institure – NMI), some of which are semi-quantitative.

The objective of this SAP is to describe the methods and procedures that will be used by the selected laboratories to ensure quality, accuracy, precision and completeness of the analytical data generated as part of this investigation. The primary focus is to acquire environmental data that are scientifically sound, legally defensible and of acceptable quality.

6.2 Analytical Testing Program

The following sections provide descriptions of the analytical methodologies that will be used for the duration of this project. All United States Environmental Protection Agency (USEPA) methods referred to are from "Test Methods for Evaluating Solid Waste (SW-846)", Revision A, July 1992, US EPA.

6.3 Sample Handling, Preservation and Storage

This section outlines the general procedures necessary for sample custody that are to be performed by the laboratory. It is understood that the laboratory will act in full accordance with the terms of its NATA Registration for Chemical Testing.

6.3.1 Laboratory Receipt of Samples

Field samples for this project will be delivered to the laboratory pre-contained and pre-preserved (as appropriate) in accordance with laboratory procedures. Sample containers used for the collection of field samples are, wherever possible, to be supplied by the relevant analytical laboratory, pre-cleaned and inspected. Accompanying each delivery of samples will be a Chain of Custody (CoC) Record.

The following items are checked and performed by the laboratory upon receipt of samples with the CoC:

- The custody seals and tape on the cooler are unbroken and uncut;
- The signature on the external custody seal matches one of the sampler(s) signature(s) on the internal CoC;
- Measurement is taken to determine if samples have arrived at the appropriate temperature;
- The sample containers within the cooler are intact;

- The identification on the sample containers correspond to the entries on the CoC;
- The number of sample containers received is equal to the number of samples listed on the CoC;
- If sample custody is valid, the samples are logged in by the laboratory as per the standard operating procedure;
- A copy of the CoC is delivered to the Project Manager within three working days.

If CoC discrepancies exist, appropriate notes (signed and dated) are made on the CoC and the Project Manager is notified by the laboratory. In the event that the laboratory Sample Custodian judges the sample custody (or part thereof) to be invalid (e.g. samples arrive damaged or custody seals are broken), the Project Manager will be advised immediately and those samples will not be analysed until authorised by the Project Manager.

Any problem with a sample will be noted on the CoC Record and notified to URS in writing as soon as practicable for action or response. Laboratory capacity will be pre-agreed by the laboratory and confirmed in writing to URS prior to the submission of samples to the laboratory.

6.3.2 Pre-and Post-analysis Storage

Samples should be transported to a laboratory within 48 hours of sample collection. After the Sample Custodian has logged in the samples, they are placed in temporary refrigerated storage, and maintained at a temperature of 6^{0} C or less until analyses are performed. Sample analyses are scheduled as soon as practicable following delivery to the laboratory and extractions and analyses are consistent with the analyte holding times specified by the laboratory.

6.4 Analytical Quality Assurance/Quality Control (QA/QC)

Specific mechanisms for checking the accuracy and precision of analytical data in order to ensure that data quality objectives are met, involve the analysis of the laboratory and field QA check samples.

6.4.1 Laboratory QA/QC Samples

Blanks - contaminant free samples designed to monitor the introduction of artefacts into a process. Reagent blanks or method blanks are analysed to assess the level of contamination which exists in the analytical system and which might lead to the reporting of elevated concentrations or false positive data. A reagent/method blank consists of reagents specific to the method that are carried through clean-up and analysis. Ideally, the concentration of an analyte in the blank is below the reporting limit of that analyte.

Calibration Check Standards – are pre-prepared from the same solution and are used to confirm linearity of the initial calibration curve. Acceptance must be within predicted limits.

Laboratory Duplicates - samples prepared by dividing a field sample into two or more aliquots, then analysed separately. Duplicate samples are considered to be two replicates. Replicate samples should ideally be representative of the originating sample, but in many cases this is not practical due to the nature of the sample; hence the analysis of replicate samples provide an indication of the effect of sample matrix variability on precision, in addition to assessing analytical precision.

Matrix Spikes - are field samples to which predetermined concentrations of analytes have been added. The matrix spike (MS) is taken through the entire analytical procedure and the percent recovery of each analyte is calculated as follows:

Percent Recovery = $X/T \ge 100\%$

where, X = the observed value of measurement; and

T = "true " value (value of primary sample with no spiking matrix added).

Percent recovery values provide an indication of the effect of sample matrix on the accuracy of the analysis, in addition to analytical accuracy.

Surrogates - are organic compounds which are similar to analytes of interest in chemical composition, extraction, and chromatography, but which are not normally found in field samples. These compounds are spiked into all sample aliquots prior to preparation and analysis. Percent recoveries are calculated for each surrogate, providing an indication of analytical accuracy including unusual matrix effects and gross sample processing errors.

The following QC checks are to be performed at a frequency of 1 in 20 field samples or greater for volatile, semi-volatile and metal analytes:

- Reagent/method blanks;
- Calibration check standards;
- Laboratory duplicates;
- Control spikes;
- Laboratory Control Samples; and
- MS/MSDs (metals only).

With respect to routine organics analysis, ALS use spiked samples because of the difficulty in obtaining appropriate, matrix-matched, certified reference materials for all target analytes. ALS QC protocols require the use of an Independent Calibration Verification standard (ICV) for all methods. An ICV is prepared from target analytes obtained from an independent source from those used for calibration standards or as spiking solutions for laboratory control samples and matrix spikes. This provides an indirect independent check of the accuracy of laboratory control and matrix spikes.

6.4.2 Data Handling

All analytical data generated by the analytical laboratory will be appropriately reduced and undergo comprehensive validation prior to reporting. Records and numerical calculations will be legible and complete enough to permit reconstruction of the work by a qualified individual other than the originator.

The originating analyst will reduce and validate a given data package to ensure that:

- Holding times have been met;
- Appropriate standard operating procedures have been followed;
- Field sample results are correct and complete (if applicable); •
- QC check sample results are correct and complete; •
- QC check sample results are within established control limits and data quality objectives; and
- Documentation is complete.

If the originating analyst finds that the validity of data is in doubt due to non-conformance with the above checklist, then the data is flagged and appropriate corrective procedures are initiated.

Once the originating analyst has reduced and validated the data package, it is then passed onto the Document Control/Quality Assurance Officer, Laboratory Manager, or other appropriately qualified senior personnel for independent review.

A NATA approved signatory signs and releases the work reported.

The requirements of the reports include the following:

- The format of the final report is in full accordance with NATA requirements for Chemical Testing, including the provision of a NATA stamp on the covering page if appropriate;
- A summary table of sample no., matrix, date sampled, date received, date prepared/extracted and • date analysed is completed;
- All field sample results for each type of sample matrix, as listed on the CoC, are reported collectively • on separate tables noting URS sample ID, Laboratory ID and Laboratory sample Batch No;
- All QA check results are reported. Each type of sample matrix, as listed on the CoC, are reported • collectively on separate tables;
- All water matrix results are expressed as mg/L or $\mu g/L$; ٠
- All solid matrix results are expressed as mg/kg or µg/kg (dry weight); •
- Full reference to analytical procedures used are stated; .

- Modifications to procedures performed outside the requirements of this SAP have been stated;
- Non-conformance to any of the analytical requirements of this SAP are clearly stated;
- A key to abbreviations is provided; and
- Analyte nomenclature remains consistent throughout the entire project.

If complete, the final report is then signed by the appropriate NATA signatory and submitted to URS.

In the event that a preliminary test report is issued, the degree to which the data has been validated by the laboratory must be clearly indicated, and the final test report must contain an appropriate reference to the original one.

If, after the issuing of a report, data are found to be invalid, the original report must be withdrawn and replaced by one marked "Replacement for Report No", with a version number clearly marked.

6.4.3 Data Validation

The primary objective of the data validation process is to ensure that the data reported can be used to achieve the project objectives.

The validity of all analytical data reported will be assessed by URS by critical review of the QC check sample results. This will be performed in general accordance with guidance by US EPA guidelines and NODG as presented in the document "National Functional Guidelines For Organic Data Review, Multimedia, Multiconcentration (OLMO 1.0) and Low Concentration Water (OLCO 1.0), June 1991", where appropriate (USEPA, 1991).

ANZECC/ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand, October 2000.

Axiak, V., Micallef, D., Muscat, J., Vella, A. and Mintoff, B. (2003). Imposex as a biomonitoring tool for marine pollution by tributyltin: some further observations. *Environment International*, **28**, 743-749.

Blaber, S.J.M. (1970). The occurrence of a penis-like outgrowth behind the right tentacle in spent females of *Nucella lapillus* (L.). *Proceedings of the Malacological Society of London*, **39**, 231-233.

Coastal & Marine Geosciences (1998). Berowra Creek Estuary Process Study Technical Report : Sediment characteristics and processes. Coastal & Marine Geosciences Geological and Environmental Consultant, Sydney.

Evans, S.M., Birchenough, A.C. and Brancato, M.S. (2000). The TBT ban: out of the frying pan into the fire? *Marine Pollution Bulletin*, **40**, 204-211.

Fent, K. (1996). Ecotoxicology of organotin compounds. Critical Reviews in Toxicology, 26, 1-117.

Gibson, C.P. and Wilson, S.P. (2003). Imposex still evident in eastern Australia 10 years after tributyltin restrictions. *Marine Environmental Research*, **55**, 101-112.

Konstantinou, I.J. and Albanis, T.A. (2004). Worldwide occurrence of antfouling paint booster biocides in the aquatic environment: a review. *Environment International*, **30**, 235-248.

Makita, Y. and Omura, M. (2006). Effects of perinatal combined exposure to 1,1-dichloro-2,2 bis (p-chlorophenyl) ethylene and tributyltin on male reproductive system. *Basic and Clinical Pharmacolog & Toxicology*, **99**, 128-132.

Moore, T. (1988). Government announces measures to implement ban on marine antifouling paints [Press release] (New South Wales Minister for the Environment), 22 December 1988, Sydney.

Santos, M.M., Vieira, N., Reis-Henriques, M.A., Santos, A.M., Gomez-Ariza, J.L., Giradles, I. and ten Hallers-Tjabbes, C.C. (2004). Imposex and butyltin contamination off the Oporto COSAT (NW Portugal): a posible effect of the discharge of dredged material. *Environment International*, **30**, 793-798.

Smith, B.S. (1981a). Reproductive anomalies in stenoglossan snails related to pollution from marinas. *Journal of Applied Toxicology*, **1**, 15-21.

Smith, B.S. (1981b). Male characteristics on female mud snails caused by antifouling bottom paints. *Journal of Applied Toxicology*, **1**, 22-25.

Smith, B.S. (1981c). Tributyltin compounds induced male characteristics on female mud snails *Nassarius obsoletus=Hyanassa obsoletus. Journal of Applied Toxicology*, **1**, 141-144.

Taylor, S.E. (2000). The source and remobilisation of contaminated sediment in Port Jackson, Australia. Unpubl. PhD thesis, Department of Geology and Geophysics, The University of Sydney, Sydney

References

University of New South Wales (UNSW) (2002). School of Civil Engineering, Water Research Laboratory, Brooklyn Estuaries Processes Study - Working Paper 3.

J:JOBS/43217595/HORNSBY SHIRE COUNCIL - SED & ANTIFOUL STUDY/DELIVERABLES/SED & ANTIFOUL FINAL REPORT/APP B - ANTIFOUL STUDY (STAGE 2) - REPORT/APP C - SEDIMENT STUDY (STAGE 2) - SAP/STAGE 2 SEDIMENT STUDY FINAL SAP 20-3-07.DOC 7-2

Limitations

URS Australia Pty Ltd (URS) has prepared this document in accordance with the usual care and thoroughness of the consulting profession for the use of Hornsby Shire Council and their consultants and only those third parties who have been authorised in writing by URS to rely on the document. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this document. It is prepared in accordance with the Proposal dated 29 August 2006 and was modified to reflect the outcomes of the Stage 1 Sediment Study.

The methodology adopted and sources of information used by URS are outlined in this document. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this document as provided to URS was false.

This Sampling and Analysis Plan (SAP) for sediment investigations has been developed in accordance with the scope of works provided by Hornsby Shire Council and the outcomes and feedback from the Estuary Management Committee Meeting at Hornsby Shire Council on 8 February 2007, and was prepared between 8 and 20 February 2007. The SAP is based on the conditions encountered and information reviewed at the time of preparation.

This document should be read in full. No responsibility is accepted for use of any part of this document in any other context or for any other purpose or by third parties. This document does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Opinions and recommendations contained in this plan are based upon data provided by representatives of Hornsby Shire Council, information gained as a result of the Stage 1 Sediment Study and other information provided from government authorities' records and other third parties. This approach reflects current professional practice for sediment investigations.

This investigation addresses the likelihood of hazardous substance contamination resulting from past and current known uses of the study area. Given the limited and mutually agreed scope of work, URS does not guarantee that hazardous materials do not exist in an area of sediment. Similarly, an area of sediment which appears to be unaffected by hazardous materials at the time of our assessment may later, due to natural phenomena or human intervention, become contaminated.

Subsurface conditions can vary across a particular site and cannot be explicitly defined by these investigations. It is unlikely therefore that the results and estimations expressed in this document will represent the extremes of conditions within the site or the conditions at any location removed from the specific points of sampling. Subsurface conditions including contaminant concentrations can also change in a short time.

The information in this document is considered to be accurate at the date of issue and is in accordance with known conditions at the site.

Limitations

This document and the information contained herein should only be regarded as validly representing the site conditions at the time of the investigation unless otherwise explicitly stated in a preceding section of this document.

J:\JOBS\43217595\HORNSBY SHIRE COUNCIL - SED & ANTIFOUL STUDY\DELIVERABLES\SED & ANTIFOUL FINAL REPORT\APP B - ANTIFOUL STUDY (STAGE 2) - REPORT\APP C - SEDIMENT STUDY (STAGE 2) - SAP\STAGE 2 SEDIMENT STUDY FINAL SAP 20-3-07.DOC IRS

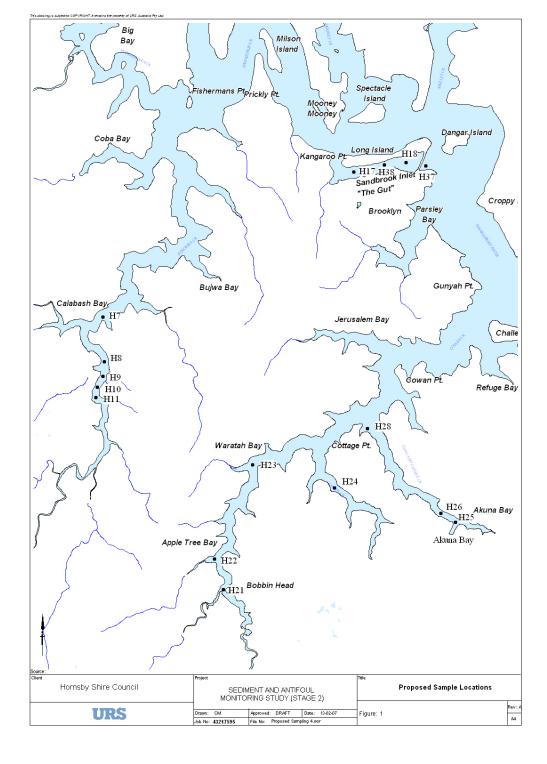
Table	1.	Sam	oling	Locations
Labic		Dam	pung	Locations

Sample				Analytes
ID	Location Decription	Easting	Northing	
H7		325530	6282107	TBT, PCBs, PAHs,
	Berowara Creek Calabash Bay			OCPs, OPPs, Silver
H8		325808	6281083	TBT, PCBs, PAHs,
				OCPs, OPPs
	Berowra Creek east of Crossland Bay			
H9		325771	6280706	TBT, PCBs, PAHs, OCPs,
				OPPs, Diuron and
				Chlorothalonil
				(quantitative analysis),
				Irgarol and Dichlofluanid
				(semi-quantitative analysis)
	Berowra Creek at Marina			analysis)
H10		325685	6280026	TBT, PCBs, PAHs,
				OCPs, OPPs
	Berowra Creek			
H17		333320	6286561	TBT, PCBs, PAHs,
	Hawkesbury River Sandbrook Inlet West - at Marina			OCPs, OPPs
H18	Maima	335098	6287024	TBT, PCBs, PAHs,
		000000	0207021	OCPs, OPPs
	Hawkesbury River Sandbrook Inlet East			
H21				TBT, PCBs, PAHs,
				OCPs, OPPs
H22	Cowan Creek Bobbin Head - at Marina	329680 328980	6273756 6274926	TBT, PCBs, PAHs,
П22		526960	0274920	OCPs, OPPs
	Cowan Creek Apple Tree Bay			OCrs, Orrs
H23		330452	6277834	TBT, PCBs, PAHs,
				OCPs, OPPs
	Cowan Creek east of Waratah Bay			
H24		332960	6277113	TBT, PCBs, PAHs,
	Corrigen Crock Smiths Crock			OCPs, OPPs
H25	Cowan Creek Smiths Creek	336465	6275815	TBT, PCBs, PAHs,
1120	Cowan Creek Akuna Bay - at Marina adjacent to	220102	,	OCPs, OPPs
	slipway			,
H26		336487	6276077	TBT, PCBs, PAHs,
	Cowan Creek Akuna Bay - at Marina refueling			OCPs, OPPs
1120	station	222760	6279015	TDT DCD, DAIL
H28		333768	6278915	TBT, PCBs, PAHs, OCPs, OPPs
	Cowan Creek Cottage Point - adjacent to kiosk			OURS, OPPS
H31		337481	6280993	TBT, PCBs, PAHs,
				OCPs, OPPs (possibly
	Cowan Creek Refuge Bay			diuron and

Tables

				chlorothalonil (quantitative analysis), irgarol and dichlofluanid (semi- quantitative analysis) if no samples collected at H40 to H42)
H31	Course Crock Defuce Day	337481	6280993	TBT, PCBs, PAHs, OCPs, OPPs, diuron and chlorothalonil (quantitative analysis), irgarol and dichlofluanid (semi- quantitative analysis)
H37	Cowan Creek Refuge Bay	335462	6286738	TBT, PCBs, PAHs, OCPs,
1137		555402	0200750	OPPs, diuron and chlorothalonil (quantitative analysis), irgarol and dichlofluanid (semi- quantitative analysis)
H38	Hawkesbury River Brooklyn Jetty - at Marina	334339	6286858	TBT, PCBs, PAHs, OCPs,
	Hawkesbury River south of Sandbrook Inlet (centre)	55+559	0200030	OPPs, diuron and chlorothalonil (quantitative analysis), irgarol and dichlofluanid (semi- quantitative analysis)
H3	Berowra Creek west of Berowra Point	327506	6287314	Silver
H5	Berowra Creek west of Bujwa Creek	326962	6283927	Silver
H40	Hawkesbury River northwest of Long Island (STP site)	333300	6287277	TKN, TOC, NOX, Ca, Mg, Be, Al, V, Cr, Mn, Fe, Co, Cu, Zn, As, Sr, Ni, Ba, Pb, Cd, PCBs, PAHs, OCPs, OPPs, TPHs, BTEX, grain size
H41	Hawkesbury River north of Kangaroo Point (STP site)	332885	6287343	TKN, TOC, NOX, Ca, Mg, Be, Al, V, Cr, Mn, Fe, Co, Cu, Zn, As, Sr, Ni, Ba, Pb, Cd, PCBs, PAHs, OCPs, OPPs, TPHs, BTEX, grain size

H42		332557	6287461	TKN, TOC, NOX, Ca,
				Mg, Be, Al, V, Cr,
				Mn, Fe, Co, Cu, Zn,
				As, Sr, Ni, Ba, Pb, Cd,
				PCBs, PAHs, OCPs,
				OPPs, TPHs, BTEX,
	Hawkesbury River west of Hawkesbury Road			grain size
	Bridge (STP site)			


*Map Grid of Australia MGA94 (Zone 55); TBD = To be determined

Three samples from locations H37 (Brooklyn), H9 (Berowra Creek Marina) and H38 (Sandbrook Inlet) will be analysed for antifouling booster biocides diuron and chlorothalonil (quantitative analysis) and irgarol and dichlofluanid (semi-quantitative analysis) (with possibly a fourth sample from location H31 in Refuge Bay, if no samples are collected at H40, H41 and H42). Three samples from Berowra Creek will be analysed for Silver (H3, H5 and H7).

Figure

Appendices

Appendix D - Photographs (provided electronically only)

Appendices

Appendix E - Analytical Data

ALS Environmental

CERTIFICATE OF ANALYSIS

Client	🗄 URS AUSTRALIA (NSW) PTY LTD	Laboratory	Environmental Division Sydney	Page	ິ 1 of 15
Contact	: MR CARSTEN MATTHAI	Contact	ິ Victor Kedicioglu	Work Order	⁻ ES0703904
Address	: LEVEL 3, 116 MILLER STREET NORTH	Address	277-289 Woodpark Road Smithfield NSW		200700004
	SYDNEY NSW AUSTRALIA 2060		Australia 2164	Amendment No.	: 3
E-mail	☆ carsten_matthai@urscorp.com	E-mail	Victor.Kedicioglu@alsenviro.com		
Telephone	÷ 89255500	Telephone	£ 61-2-8784 8555		
Facsimile	2 89255555	Facsimile	∑ 61-2-8784 8500		
Project	2 42317595 Sediment Study	Quote number	÷ SY/019/07 V2	Date received	∑ 27 Mar 2007
Order number	┘ - Not provided -			Date issued	ິ 10 May 2007
C-O-C number	- Not provided -			No. of samples	- Received : 18
Site	∴ - Not provided -				Analysed : 18

ALSE - Excellence in Analytical Testing

Page Number: 2 of 15Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703904

Comments

This report for the ALSE reference ES0703904 supersedes any previous reports with this reference. Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Analytical Results for Samples Submitted
- 1 Surrogate Recovery Data

The analytical procedures used by ALS Environmental have been developed from established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

When moisture determination has been performed, results are reported on a dry weight basis. When a reported 'less than' result is higher than the LOR, this may be due to primary sample extracts/digestion dilution and/or insuffient sample amount for analysis. Surrogate Recovery Limits are static and based on USEPA SW846 or ALS-QWI/EN38 (in the absence of specified USEPA limits). Where LOR of reported result differ from standard LOR, this may be due to high moisture, reduced sample amount or matrix interference. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number, LOR = Limit of Reporting. * Indicates failed Surrogate Recoveries.

Specific comments for Work Order ES0703904

EP130, EP131A: Matrix spike and surrogate recoveries are low or not determined due to sample matrix effects.

Page Number : 3 of 15 Client : URS AUSTRALIA (NSW) PTY LTD Work Order : ES0703904

Work Order : E30703904							
Ampletting Deputte		Client Sample ID :	H7	H8	H9	H10	H17
Analytical Results	Samp	le Matrix Type / Description :	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sample Date / Time :	26 Mar 2007				
			15:00	15:00	15:00	15:00	15:00
		Laboratory Sample ID :					
Analyte	CAS number	LOR Units	ES0703904-001	ES0703904-002	ES0703904-003	ES0703904-004	ES0703904-005
EA055: Moisture Content							
Moisture Content (dried @ 103°C)		1.0 %	74.0	74.7	75.7	65.0	62.1
EP080/071: Total Petroleum Hydrod	arbons						
C6 - C9 Fraction		10 mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50 mg/kg	<110	<100	<70	<50	<50
C15 - C28 Fraction		100 mg/kg	<220	<190	<140	<110	<100
C29 - C36 Fraction		100 mg/kg	<220	<190	<140	<110	<100
EP080: BTEX		- •					
Benzene	71-43-2	0.1 mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.1 mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	100-41-4	0.1 mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
meta- & para-Xylene	108-38-3	0.1 mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
	106-42-3	0.0					
ortho-Xylene	95-47-6	0.1 mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EP130A: Organophosphorus Pestic	cides (Ultra-trace)			•	1	1	
Bromophos-ethyl	4824-78-6	10 µg/kg	<10	<10	<10	<10	<10
Carbophenothion	786-19-6	10 µg/kg	<10	<10	<10	<10	<10
Chlorfenvinphos (E)	470-90-6	10.0 µg/kg	<10.0	<10.0	<10.0	<10.0	<10.0
Chlorfenvinphos (Z)	470-90-8	10 µg/kg	<10	<10	<10	<10	<10
Chlorpyrifos	2921-88-2	10 µg/kg	<10	<10	<10	<10	<10
Chlorpyrifos-methyl	5598-13-0	10 µg/kg	<10	<10	<10	<10	<10
Demeton-S-methyl	919-86-8	10 µg/kg	<10	<10	<10	<10	<10
Diazinon	333-41-5	10 µg/kg	<10	<10	<10	<10	<10
Dichlorvos	62-73-7	10 µg/kg	<10	<10	<10	<10	<10
Dimethoate	60-51-5	10 µg/kg	<10	<10	<10	<10	<10
Ethion	563-12-2	10 µg/kg	<10	<10	<10	<10	<10
Fenamiphos	22224-92-6	10 µg/kg	<10	<10	<10	<10	<10
Fenthion	55-38-9	10 µg/kg	<10	<10	<10	<10	<10
Malathion	121-75-5	10 µg/kg	<10	<10	<10	<10	<10
Azinphos Methyl	86-50-0	10 µg/kg	<10	<10	<10	<10	<10
Monocrotophos	6923-22-4	10 µg/kg	<10	<10	<10	<10	<10
Parathion	56-38-2	10 µg/kg	<10	<10	<10	<10	<10
Parathion-methyl	298-00-0	10 µg/kg	<10	<10	<10	<10	<10
Pirimphos-ethyl	23505-41-1	10 µg/kg	<10	<10	<10	<10	<10
Prothiofos	34643-46-4	10 µg/kg	<10	<10	<10	<10	<10
EP131A: Organochlorine Pesticide	6				•	·	
Aldrin	309-00-2	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
alpha-BHC	319-84-6	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50

A Campbell Brothers Limited Company

Page Number: 4 of 15Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703904

Analytical Results		Client Sample ID :	H7	H8	H9	H10	H17
inaly dour recourse	Samp	le Matrix Type / Description :	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sample Date / Time :	26 Mar 2007				
		Laboratory Sample ID :	15:00	15:00	15:00	15:00	15:00
Analyte	CAS number	LOR Units	ES0703904-001	ES0703904-002	ES0703904-003	ES0703904-004	ES0703904-005
EP131A: Organochlorine Pesticide		LOR UNITS	20070007007	200700001002	200100001000	200100001001	200700001000
beta-BHC	319-85-7	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
delta-BHC	319-86-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
4.4'-DDD	72-54-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
4.4'-DDE	72-55-9	0.50 µg/kg	<0.50	0.66	1.12	0.53	<0.50
4.4'-DDT	50-29-3	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
DDT (total)	50-29-5	0.50 µg/kg	<0.50	0.66	1.12	0.53	<0.50
Dieldrin	60-57-1	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
alpha-Endosulfan	959-98-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
beta-Endosulfan	33213-65-9	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endosulfan sulfate	1031-07-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endosulfan	115-29-7	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endrin	72-20-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endrin aldehyde	7421-93-4	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endrin ketone	53494-70-5	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Heptachlor	76-44-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Heptachlor epoxide	1024-57-3	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Hexachlorobenzene (HCB)	118-74-1	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
gamma-BHC	58-89-9	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Methoxychlor	72-43-5	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
cis-Chlordane	5103-71-9	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
trans-Chlordane	5103-74-2	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Total Chlordane	0100142	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
EP131B: Polychlorinated Bipheny	ls (as Aroclors)	0.00 µg/ng					
Total Polychlorinated biphenyls		5.0 µg/kg	<5.0	<5.0	<5.0	<5.0	<5.0
Aroclor 1016	12974-11-2	5.0 µg/kg	<5.0	<5.0	<6.2	<5.0	<5.0
Aroclor 1221	11104-28-2	5.0 µg/kg	<5.0	<5.0	<6.2	<5.0	<5.0
Aroclor 1232	11141-16-5	5.0 µg/kg	<5.0	<5.0	<6.2	<5.0	<5.0
Aroclor 1242	53469-21-9	5.0 µg/kg	<5.0	<5.0	<6.2	<5.0	<5.0
Aroclor 1248	12672-29-6	5.0 µg/kg	<5.0	<5.0	<6.2	<5.0	<5.0
Aroclor 1254	11097-69-1	5.0 µg/kg	<5.0	<5.0	<6.2	<5.0	<5.0
Aroclor 1260	11096-82-5	5.0 µg/kg	<5.0	<5.0	<6.2	<5.0	<5.0
EP132B: Polynuclear Aromatic Hy				1	1		
3-Methylcholanthrene	56-49-5	10 µg/kg	<10	<10	<10	<10	<10
2-Methylnaphthalene	91-57-6	10 µg/kg	70	<10	70	40	50
7.12-Dimethylbenz(a)anthracene	57-97-6	10 µg/kg	<10	<10	<10	<10	<10
Acenaphthene	83-32-9	10 µg/kg	<10	<10	<10	<10	<10
Acenaphthylene	208-96-8	10 µg/kg	<10	10	10	20	20
				-		I	

Page Number: 5 of 15Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703904

Analytical Results		Client Sample	D: H7	H8	H9	H10	H17
Analylical Results	Sample Matrix Type / Description :			SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sample Date / Tir		26 Mar 2007	26 Mar 2007	26 Mar 2007	26 Mar 2007
		Laboratory Comple	15:00	15:00	15:00	15:00	15:00
Analyte	CAS number	Laboratory Sample	ES0703904-001	ES0703904-002	ES0703904-003	ES0703904-004	ES0703904-005
EP132B: Polynuclear Aromatic Hy		Lon oning					
Anthracene	120-12-7	10 µg/kg	10	<10	20	20	20
Benz(a)anthracene	56-55-3	10 µg/kg	50	30	40	50	110
Benzo(a)pyrene	50-32-8	10 µg/kg	70	50	50	70	140
Benzo(b)fluoranthene	205-99-2	10 µg/kg	60	50	60	80	150
Benzo(e)pyrene	192-97-2	10 µg/kg	50	40	40	60	100
Benzo(g.h.i)perylene	191-24-2	10 µg/kg	60	50	50	70	110
Benzo(k)fluoranthene	207-08-9	10 µg/kg	60	40	40	50	130
Chrysene	218-01-9	10 µg/kg	60	40	50	70	150
Coronene	191-07-1	10 µg/kg	10	10	20	20	30
Dibenz(a.h)anthracene	53-70-3	10 µg/kg	10	<10	<10	<10	20
Fluoranthene	206-44-0	10 µg/kg	90	70	70	110	240
Fluorene	86-73-7	10 µg/kg	10	<10	10	<10	10
Indeno(1.2.3.cd)pyrene	193-39-5	10 µg/kg	50	40	30	40	90
N-2-Fluorenyl Acetamide	53-96-3	100 µg/kg	<100	<100	<100	<100	<100
Naphthalene	91-20-3	10 µg/kg	70	<10	70	40	50
Perylene	198-55-0	10 µg/kg	30	20	20	30	60
Phenanthrene	85-01-8	10 µg/kg	50	30	50	50	80
Pyrene	129-00-0	10 µg/kg	100	70	80	110	220
EP080S: TPH(V)/BTEX Surrogates	;						
1.2-Dichloroethane-D4	17060-07-0	0.1 %	105	85.3	112	87.5	86.4
Toluene-D8	2037-26-5	0.1 %	110	80.0	89.0	80.0	85.6
4-Bromofluorobenzene	460-00-4	0.1 %	92.6	81.0	99.2	81.5	82.1
EP130S: Organophosphorus Pesti	icide Surrogate		· · · · · · · · · · · · · · · · · · ·	•			
DEF	78-48-8	0.1 %	21.8	32.4	30.0	Not Determined	34.9
EP131S: OC Pesticide Surrogate			1	1			
Dibromo-DDE	21655-73-2	0.1 %	25.3	35.1	45.6	18.3	24.4
EP131T: PCB Surrogate			· · · · · · · · · · · · · · · · · · ·	·			•
Decachlorobiphenyl	2051-24-3	0.1 %	26.6	39.9	47.9	21.9	23.5
EP132T: Base/Neutral Extractable	Surrogates		· · · · · · · · · · · · · · · · · · ·	•			•
2-Fluorobiphenyl	321-60-8	0.1 %	62.9	49.8	55.2	64.7	65.0
Anthracene-d10	1719-06-8	0.1 %	67.7	67.3	66.8	72.4	72.6
4-Terphenyl-d14	1718-51-0	0.1 %	63.7	61.8	63.5	72.3	72.4

Page Number : 6 of 15 Client : URS AUSTRALIA (NSW) PTY LTD Work Order : ES0703904

Work Order . E50/03904							
Analytical Desults		Client Sample ID	: H18	H21	H22	H23	H24
Analytical Results	Samp	ole Matrix Type / Description	n : SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sample Date / Time		26 Mar 2007	26 Mar 2007	26 Mar 2007	26 Mar 2007
			15:00	15:00	15:00	15:00	15:00
		Laboratory Sample IE		E0070004.007	F0070004 000	E0070004 000	E00700004 040
Analyte	CAS number	LOR Units	ES0703904-006	ES0703904-007	ES0703904-008	ES0703904-009	ES0703904-010
EA055: Moisture Content							
Moisture Content (dried @ 103°C)		1.0 %	61.6	65.0	71.7	78.2	76.0
EP080/071: Total Petroleum Hydro	ocarbons						
C6 - C9 Fraction		10 mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50 mg/kg	<50	<50	<50	<140	<60
C15 - C28 Fraction		100 mg/kg	<100	<100	<100	<270	<120
C29 - C36 Fraction		100 mg/kg	<100	<100	<100	<270	<120
EP080: BTEX							
Benzene	71-43-2	0.1 mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.1 mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	100-41-4	0.1 mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
meta- & para-Xylene	108-38-3	0.1 mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
	106-42-3	0 0					
ortho-Xylene	95-47-6	0.1 mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EP130A: Organophosphorus Pest	icides (Ultra-trace)	0 0	I	_	1	I	_ I
Bromophos-ethyl	4824-78-6	10 µg/kg	<10	<10	<10	<10	<10
Carbophenothion	786-19-6	10 µg/kg	<10	<10	<10	<10	<10
Chlorfenvinphos (E)	470-90-6	10.0 µg/kg	<10.0	<10.0	<10.0	<10.0	<10.0
Chlorfenvinphos (Z)	470-90-8	10 µg/kg	<10	<10	<10	<10	<10
Chlorpyrifos	2921-88-2	10 µg/kg	<10	<10	<10	<10	<10
Chlorpyrifos-methyl	5598-13-0	10 µg/kg	<10	<10	<10	<10	<10
Demeton-S-methyl	919-86-8	10 µg/kg	<10	<10	<10	<10	<10
Diazinon	333-41-5	10 µg/kg	<10	<10	<10	<10	<10
Dichlorvos	62-73-7	10 µg/kg	<10	<10	<10	<10	<10
Dimethoate	60-51-5	10 µg/kg	<10	<10	<10	<10	<10
Ethion	563-12-2	10 µg/kg	<10	<10	<10	<10	<10
Fenamiphos	22224-92-6	10 µg/kg	<10	<10	<10	<10	<10
Fenthion	55-38-9	10 µg/kg	<10	<10	<10	<10	<10
Malathion	121-75-5	10 µg/kg	<10	<10	<10	<10	<10
Azinphos Methyl	86-50-0	10 µg/kg	<10	<10	<10	<10	<10
Monocrotophos	6923-22-4	10 µg/kg	<10	<10	<10	<10	<10
Parathion	56-38-2	10 µg/kg	<10	<10	<10	<10	<10
Parathion-methyl	298-00-0	10 µg/kg	<10	<10	<10	<10	<10
Pirimphos-ethyl	23505-41-1	10 µg/kg	<10	<10	<10	<10	<10
Prothiofos	34643-46-4	10 µg/kg	<10	<10	<10	<10	<10
EP131A: Organochlorine Pesticid		- 100		<u> </u>		I	
Aldrin	309-00-2	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
alpha-BHC	319-84-6	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
		0.00 µg/ng					

A Campbell Brothers Limited Company

Page Number: 7 of 15Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703904

		Client Sample ID :	114.0	1104	1100	1100	1104
Analytical Results	C		H18 SEDIMENT	H21 SEDIMENT	H22 SEDIMENT	H23 SEDIMENT	H24 SEDIMENT
	Samp	le Matrix Type / Description : Sample Date / Time :	26 Mar 2007				
		Sample Date / Time .	15:00	15:00	15:00	15:00	15:00
		Laboratory Sample ID :	10.00	10.00	10.00	10.00	10.00
Analyte	CAS number	LOR Units	ES0703904-006	ES0703904-007	ES0703904-008	ES0703904-009	ES0703904-010
EP131A: Organochlorine Pesticides	3			ł			+
beta-BHC	319-85-7	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
delta-BHC	319-86-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
4.4'-DDD	72-54-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
4.4'-DDE	72-55-9	0.50 µg/kg	<0.50	1.04	<0.50	<0.50	<0.50
4.4'-DDT	50-29-3	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
DDT (total)		0.50 µg/kg	<0.50	1.04	<0.50	<0.50	<0.50
Dieldrin	60-57-1	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
alpha-Endosulfan	959-98-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
beta-Endosulfan	33213-65-9	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endosulfan sulfate	1031-07-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endosulfan	115-29-7	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endrin	72-20-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endrin aldehyde	7421-93-4	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endrin ketone	53494-70-5	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Heptachlor	76-44-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Heptachlor epoxide	1024-57-3	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Hexachlorobenzene (HCB)	118-74-1	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
gamma-BHC	58-89-9	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Methoxychlor	72-43-5	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
cis-Chlordane	5103-71-9	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
trans-Chlordane	5103-74-2	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Total Chlordane		0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
EP131B: Polychlorinated Biphenyls	as Aroclors)						
Total Polychlorinated biphenyls		5.0 µg/kg	<5.0	13.9	<5.0	<5.0	<5.0
Aroclor 1016	12974-11-2	5.0 µg/kg	<5.0	<5.0	<5.0	<6.2	<6.2
Aroclor 1221	11104-28-2	5.0 µg/kg	<5.0	<5.0	<5.0	<6.2	<6.2
Aroclor 1232	11141-16-5	5.0 µg/kg	<5.0	<5.0	<5.0	<6.2	<6.2
Aroclor 1242	53469-21-9	5.0 µg/kg	<5.0	<5.0	<5.0	<6.2	<6.2
Aroclor 1248	12672-29-6	5.0 µg/kg	<5.0	<5.0	<5.0	<6.2	<6.2
Aroclor 1254	11097-69-1	5.0 µg/kg	<5.0	13.9	<5.0	<6.2	<6.2
Aroclor 1260	11096-82-5	5.0 µg/kg	<5.0	<5.0	<5.0	<6.2	<6.2
EP132B: Polynuclear Aromatic Hyd	rocarbons						
3-Methylcholanthrene	56-49-5	10 µg/kg	<10	<10	<10	<10	<10
2-Methylnaphthalene	91-57-6	10 µg/kg	50	50	<10	70	50
7.12-Dimethylbenz(a)anthracene	57-97-6	10 µg/kg	<10	<10	<10	<10	<10
Acenaphthene	83-32-9	10 µg/kg	<10	<10	<10	<10	<10
Acenaphthylene	208-96-8	10 µg/kg	30	50	20	20	10

Page Number: 8 of 15Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703904

Analytical Paculta		Client Sample I	D : H18	H21	H22	H23	H24
Analytical Results	Sample	e Matrix Type / Descripti		SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sample Date / Tin		26 Mar 2007	26 Mar 2007	26 Mar 2007	26 Mar 2007
			15:00	15:00	15:00	15:00	15:00
		Laboratory Sample	ES0703904-006	ES0703904-007	ES0703904-008	ES0703904-009	ES0703904-010
Analyte	CAS number	LOR Units	E30703904-000	230703904-007	E30703904-008	E30703904-009	E30703904-010
EP132B: Polynuclear Aromatic Hydr							1
Anthracene	120-12-7	10 µg/kg	20	50	20	20	10
Benz(a)anthracene	56-55-3	10 µg/kg	140	110	70	40	30
Benzo(a)pyrene	50-32-8	10 µg/kg	190	160	110	60	50
Benzo(b)fluoranthene	205-99-2	10 µg/kg	210	160	90	60	50
Benzo(e)pyrene	192-97-2	10 µg/kg	140	120	70	50	40
Benzo(g.h.i)perylene	191-24-2	10 µg/kg	160	120	80	50	40
Benzo(k)fluoranthene	207-08-9	10 µg/kg	160	150	100	60	40
Chrysene	218-01-9	10 µg/kg	170	150	90	50	40
Coronene	191-07-1	10 µg/kg	40	40	30	20	10
Dibenz(a.h)anthracene	53-70-3	10 µg/kg	30	30	10	10	<10
Fluoranthene	206-44-0	10 µg/kg	260	250	160	90	60
Fluorene	86-73-7	10 µg/kg	10	10	<10	10	<10
Indeno(1.2.3.cd)pyrene	193-39-5	10 µg/kg	120	90	60	40	30
N-2-Fluorenyl Acetamide	53-96-3	100 µg/kg	<100	<100	<100	<100	<100
Naphthalene	91-20-3	10 µg/kg	50	50	<10	70	50
Perylene	198-55-0	10 µg/kg	60	50	30	20	20
Phenanthrene	85-01-8	10 µg/kg	70	110	60	50	40
Pyrene	129-00-0	10 µg/kg	260	260	160	100	70
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.1 %	87.6	87.1	116	101	106
Toluene-D8	2037-26-5	0.1 %	86.1	80.8	116	106	117
4-Bromofluorobenzene	460-00-4	0.1 %	81.9	77.8	94.2	90.0	96.0
EP130S: Organophosphorus Pestici	ide Surrogate		,			•	·
DEF	78-48-8	0.1 %	32.2	Not Determined	29.4	Not Determined	28.3
EP131S: OC Pesticide Surrogate				1		I	
Dibromo-DDE	21655-73-2	0.1 %	41.7	28.1	47.2	Not Determined	15.5
EP131T: PCB Surrogate							
Decachlorobiphenyl	2051-24-3	0.1 %	51.6	25.9	55.5	Not Determined	19.2
EP132T: Base/Neutral Extractable Su	urrogates		·	•			
2-Fluorobiphenyl	321-60-8	0.1 %	53.9	54.8	50.0	57.5	71.3
Anthracene-d10	1719-06-8	0.1 %	67.0	62.4	62.0	68.0	81.5
4-Terphenyl-d14	1718-51-0	0.1 %	63.2	54.3	60.1	62.8	75.4

Page Number: 9 of 15Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703904

		Client Sample ID	: H25	H26	H28	H31	H37
Analytical Results	Samp	le Matrix Type / Description		SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
	oump	Sample Date / Time		26 Mar 2007	26 Mar 2007	26 Mar 2007	26 Mar 2007
		·	15:00	15:00	15:00	15:00	15:00
		Laboratory Sample ID					
Analyte	CAS number	LOR Units	ES0703904-011	ES0703904-012	ES0703904-013	ES0703904-014	ES0703904-015
EA055: Moisture Content							
Moisture Content (dried @ 103°C)		1.0 %	37.7	60.4	48.5	62.4	64.7
EP080/071: Total Petroleum Hydroc	arbons		·			•	
C6 - C9 Fraction		10 mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50 mg/kg	<50	<50	<50	<50	<60
C15 - C28 Fraction		100 mg/kg	<100	<100	<100	<100	<110
C29 - C36 Fraction		100 mg/kg	<100	<100	<100	<100	<110
EP080: BTEX						•	
Benzene	71-43-2	0.1 mg/kg	<0.1	<0.2	<0.1	<0.2	<0.2
Toluene	108-88-3	0.1 mg/kg	<0.1	<0.2	<0.1	<0.2	<0.2
Ethylbenzene	100-41-4	0.1 mg/kg	<0.1	<0.2	<0.1	<0.2	<0.2
meta- & para-Xylene	108-38-3	0.1 mg/kg	<0.1	<0.2	<0.1	<0.2	<0.2
	106-42-3						
ortho-Xylene	95-47-6	0.1 mg/kg	<0.1	<0.2	<0.1	<0.2	<0.2
EP130A: Organophosphorus Pestic	ides (Ultra-trace)						
Bromophos-ethyl	4824-78-6	10 µg/kg	<10	<10	<10	<10	<10
Carbophenothion	786-19-6	10 µg/kg	<10	<10	<10	<10	<10
Chlorfenvinphos (E)	470-90-6	10.0 µg/kg	<10.0	<10.0	<10.0	<10.0	<10.0
Chlorfenvinphos (Z)	470-90-8	10 µg/kg	<10	<10	<10	<10	<10
Chlorpyrifos	2921-88-2	10 µg/kg	<10	<10	<10	<10	<10
Chlorpyrifos-methyl	5598-13-0	10 µg/kg	<10	<10	<10	<10	<10
Demeton-S-methyl	919-86-8	10 µg/kg	<10	<10	<10	<10	<10
Diazinon	333-41-5	10 µg/kg	<10	<10	<10	<10	<10
Dichlorvos	62-73-7	10 µg/kg	<10	<10	<10	<10	<10
Dimethoate	60-51-5	10 µg/kg	<10	<10	<10	<10	<10
Ethion	563-12-2	10 µg/kg	<10	<10	<10	<10	<10
Fenamiphos	22224-92-6	10 µg/kg	<10	<10	<10	<10	<10
Fenthion	55-38-9	10 µg/kg	<10	<10	<10	<10	<10
Malathion	121-75-5	10 µg/kg	<10	<10	<10	<10	<10
Azinphos Methyl	86-50-0	10 µg/kg	<10	<10	<10	<10	<10
Monocrotophos	6923-22-4	10 µg/kg	<10	<10	<10	<10	<10
Parathion	56-38-2	10 µg/kg	<10	<10	<10	<10	<10
Parathion-methyl	298-00-0	10 µg/kg	<10	<10	<10	<10	<10
Pirimphos-ethyl	23505-41-1	10 µg/kg	<10	<10	<10	<10	<10
Prothiofos	34643-46-4	10 µg/kg	<10	<10	<10	<10	<10
EP131A: Organochlorine Pesticides				0.50			0.50
Aldrin	309-00-2	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
alpha-BHC	319-84-6	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50

Page Number: 10 of 15Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703904

Analytical Deculta		Client Sample ID :	H25	H26	H28	H31	H37
Analytical Results	Samp	le Matrix Type / Description :	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sample Date / Time :	26 Mar 2007				
			15:00	15:00	15:00	15:00	15:00
Γ		Laboratory Sample ID :	E00700004 044	500700004 040	500700004 040	E00700004 044	500700004 045
Analyte	CAS number	LOR Units	ES0703904-011	ES0703904-012	ES0703904-013	ES0703904-014	ES0703904-015
EP131A: Organochlorine Pesticide							
beta-BHC	319-85-7	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
delta-BHC	319-86-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
4.4'-DDD	72-54-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
4.4'-DDE	72-55-9	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
4.4'-DDT	50-29-3	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
DDT (total)		0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Dieldrin	60-57-1	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
alpha-Endosulfan	959-98-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
beta-Endosulfan	33213-65-9	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endosulfan sulfate	1031-07-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endosulfan	115-29-7	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endrin	72-20-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endrin aldehyde	7421-93-4	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endrin ketone	53494-70-5	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Heptachlor	76-44-8	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Heptachlor epoxide	1024-57-3	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Hexachlorobenzene (HCB)	118-74-1	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
gamma-BHC	58-89-9	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Methoxychlor	72-43-5	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
cis-Chlordane	5103-71-9	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
trans-Chlordane	5103-74-2	0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Total Chlordane		0.50 µg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
EP131B: Polychlorinated Biphenyl	s (as Aroclors)	· · · · · · · · · · · · · · · · · · ·				•	
Total Polychlorinated biphenyls		5.0 µg/kg	<5.0	<5.0	16.0	<5.0	<5.0
Aroclor 1016	12974-11-2	5.0 µg/kg	<5.0	<5.0	<5.0	<5.0	<5.0
Aroclor 1221	11104-28-2	5.0 µg/kg	<5.0	<5.0	<5.0	<5.0	<5.0
Aroclor 1232	11141-16-5	5.0 µg/kg	<5.0	<5.0	<5.0	<5.0	<5.0
Aroclor 1242	53469-21-9	5.0 µg/kg	<5.0	<5.0	<5.0	<5.0	<5.0
Aroclor 1248	12672-29-6	5.0 µg/kg	<5.0	<5.0	<5.0	<5.0	<5.0
Aroclor 1254	11097-69-1	5.0 µg/kg	<5.0	<5.0	16.0	<5.0	<5.0
Aroclor 1260	11096-82-5	5.0 µg/kg	<5.0	<5.0	<5.0	<5.0	<5.0
EP132B: Polynuclear Aromatic Hyd	drocarbons						•
3-Methylcholanthrene	56-49-5	10 µg/kg	<10	<10	<10	<10	<10
2-Methylnaphthalene	91-57-6	10 µg/kg	30	30	30	40	50
7.12-Dimethylbenz(a)anthracene	57-97-6	10 µg/kg	<10	<10	<10	<10	<10
Acenaphthene	83-32-9	10 µg/kg	<10	20	20	<10	10
Acenaphthylene	208-96-8	10 µg/kg	<10	20	20	<10	40
				l		l	L

Page Number: 11 of 15Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703904

Analytical Posulta		Client Sample I	D: H25	H26	H28	H31	H37
Analytical Results	Sample Matrix Type / Description :			SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
Sample Da		Sample Date / Tim		26 Mar 2007	26 Mar 2007	26 Mar 2007	26 Mar 2007
			15:00	15:00	15:00	15:00	15:00
		Laboratory Sample I	ES0703904-011	ES0703904-012	ES0703904-013	ES0703904-014	ES0703904-015
Analyte	CAS number	LOR Units	230703304-011	230703904-012	230703304-013	230703304-014	230703904-013
EP132B: Polynuclear Aromatic Hyd						10	1 10
Anthracene	120-12-7	10 µg/kg	<10	80	60	<10	40
Benz(a)anthracene	56-55-3	10 µg/kg	20	370	320	20	160
Benzo(a)pyrene	50-32-8	10 µg/kg	20	410	380	30	170
Benzo(b)fluoranthene	205-99-2	10 µg/kg	20	370	340	30	200
Benzo(e)pyrene	192-97-2	10 µg/kg	10	220	210	20	120
Benzo(g.h.i)perylene	191-24-2	10 µg/kg	20	220	210	20	110
Benzo(k)fluoranthene	207-08-9	10 µg/kg	10	260	250	30	130
Chrysene	218-01-9	10 µg/kg	20	360	310	30	190
Coronene	191-07-1	10 µg/kg	<10	50	50	<10	30
Dibenz(a.h)anthracene	53-70-3	10 µg/kg	<10	50	60	<10	20
Fluoranthene	206-44-0	10 µg/kg	50	750	590	40	370
Fluorene	86-73-7	10 µg/kg	<10	20	10	<10	20
Indeno(1.2.3.cd)pyrene	193-39-5	10 µg/kg	10	180	170	20	90
N-2-Fluorenyl Acetamide	53-96-3	100 µg/kg	<100	<100	<100	<100	<100
Naphthalene	91-20-3	10 µg/kg	30	30	30	40	60
Perylene	198-55-0	10 µg/kg	<10	100	90	20	60
Phenanthrene	85-01-8	10 µg/kg	40	270	180	30	100
Pyrene	129-00-0	10 µg/kg	40	820	660	50	350
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.1 %	93.3	81.8	120	105	84.4
Toluene-D8	2037-26-5	0.1 %	86.9	79.9	96.0	112	79.6
4-Bromofluorobenzene	460-00-4	0.1 %	83.6	77.9	105	90.2	80.0
EP130S: Organophosphorus Pestic	ide Surrogate						
DEF	78-48-8	0.1 %	41.4	22.6	Not Determined	27.3	45.9
EP131S: OC Pesticide Surrogate					•		
Dibromo-DDE	21655-73-2	0.1 %	64.9	57.6	24.4	41.6	61.1
EP131T: PCB Surrogate				.			1
Decachlorobiphenyl	2051-24-3	0.1 %	61.0	82.6	24.5	43.7	64.1
EP132T: Base/Neutral Extractable S	Surrogates						
2-Fluorobiphenyl	321-60-8	0.1 %	60.0	54.5	60.0	55.2	59.3
Anthracene-d10	1719-06-8	0.1 %	67.2	57.8	67.6	55.4	67.5
4-Terphenyl-d14	1718-51-0	0.1 %	64.0	66.4	65.9	56.7	69.2

Page Number : 12 of 15 Client : URS AUSTRALIA (NSW) PTY LTD Work Order : ES0703904

Work Order . ES0703904						
Analytical Results		Client Sample ID :	H38	QC3	QC4	
Analytical Results	Samp	le Matrix Type / Description :	SEDIMENT	SEDIMENT	SEDIMENT	
		Sample Date / Time :	26 Mar 2007	26 Mar 2007	26 Mar 2007	
			15:00	15:00	15:00	
		Laboratory Sample ID :				
Analyte	CAS number	LOR Units	ES0703904-016	ES0703904-017	ES0703904-018	
EA055: Moisture Content						
Moisture Content (dried @ 103°C)		1.0 %	60.0	59.5	74.5	
EP080/071: Total Petroleum Hydroc	arbons					
C6 - C9 Fraction		10 mg/kg	<10	<10	<10	
C10 - C14 Fraction		50 mg/kg	<50	<50	<50	
C15 - C28 Fraction		100 mg/kg	<100	<110	<100	
C29 - C36 Fraction		100 mg/kg	<100	<110	<100	
EP080: BTEX				•		· · ·
Benzene	71-43-2	0.1 mg/kg	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.1 mg/kg	<0.2	<0.2	<0.2	
Ethylbenzene	100-41-4	0.1 mg/kg	<0.2	<0.2	<0.2	
meta- & para-Xylene	108-38-3	0.1 mg/kg	<0.2	<0.2	<0.2	
	106-42-3	0.0				
ortho-Xylene	95-47-6	0.1 mg/kg	<0.2	<0.2	<0.2	
EP130A: Organophosphorus Pestic	ides (Ultra-trace)	0.0			1	
Bromophos-ethyl	4824-78-6	10 µg/kg	<10	<10	<10	
Carbophenothion	786-19-6	10 µg/kg	<10	<10	<10	
Chlorfenvinphos (E)	470-90-6	10.0 µg/kg	<10.0	<10.0	<10.0	
Chlorfenvinphos (Z)	470-90-8	10 µg/kg	<10	<10	<10	
Chlorpyrifos	2921-88-2	10 µg/kg	<10	<10	<10	
Chlorpyrifos-methyl	5598-13-0	10 µg/kg	<10	<10	<10	
Demeton-S-methyl	919-86-8	10 µg/kg	<10	<10	<10	
Diazinon	333-41-5	10 µg/kg	<10	<10	<10	
Dichlorvos	62-73-7	10 µg/kg	<10	<10	<10	
Dimethoate	60-51-5	10 µg/kg	<10	<10	<10	
Ethion	563-12-2	10 µg/kg	<10	<10	<10	
Fenamiphos	22224-92-6	10 µg/kg	<10	<10	<10	
Fenthion	55-38-9	10 µg/kg	<10	<10	<10	
Malathion	121-75-5	10 µg/kg	<10	<10	<10	
Azinphos Methyl	86-50-0	10 µg/kg	<10	<10	<10	
Monocrotophos	6923-22-4	10 µg/kg	<10	<10	<10	
Parathion	56-38-2	10 µg/kg	<10	<10	<10	
Parathion-methyl	298-00-0	10 µg/kg	<10	<10	<10	
Pirimphos-ethyl	23505-41-1	10 µg/kg	<10	<10	<10	
Prothiofos	34643-46-4	10 µg/kg	<10	<10	<10	
EP131A: Organochlorine Pesticides					L	
Aldrin	309-00-2	0.50 µg/kg	<0.50	<0.50	<0.50	
alpha-BHC	319-84-6	0.50 µg/kg	<0.50	<0.50	<0.50	
1 -	5.00.0	ee				<u> </u>

Page Number: 13 of 15Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703904

		Client Sample ID :	H38	QC3	QC4	
Analytical Results	Samo	le Matrix Type / Description :	SEDIMENT	SEDIMENT	SEDIMENT	
-	Samp	Sample Date / Time :	26 Mar 2007	26 Mar 2007	26 Mar 2007	
		Campie Date / Time !	15:00	15:00	15:00	
		Laboratory Sample ID :				
Analyte	CAS number	LOR Units	ES0703904-016	ES0703904-017	ES0703904-018	
EP131A: Organochlorine Pesticides	i	·				•
beta-BHC	319-85-7	0.50 µg/kg	<0.50	<0.50	<0.50	
delta-BHC	319-86-8	0.50 µg/kg	<0.50	<0.50	<0.50	
4.4'-DDD	72-54-8	0.50 µg/kg	<0.50	<0.50	<0.50	
4.4'-DDE	72-55-9	0.50 µg/kg	<0.50	<0.50	1.33	
4.4'-DDT	50-29-3	0.50 µg/kg	<0.50	<0.50	<0.50	
DDT (total)		0.50 µg/kg	<0.50	<0.50	1.33	
Dieldrin	60-57-1	0.50 µg/kg	<0.50	<0.50	<0.50	
alpha-Endosulfan	959-98-8	0.50 µg/kg	<0.50	<0.50	<0.50	
beta-Endosulfan	33213-65-9	0.50 µg/kg	<0.50	<0.50	<0.50	
Endosulfan sulfate	1031-07-8	0.50 µg/kg	<0.50	<0.50	<0.50	
Endosulfan	115-29-7	0.50 µg/kg	<0.50	<0.50	<0.50	
Endrin	72-20-8	0.50 µg/kg	<0.50	<0.50	<0.50	
Endrin aldehyde	7421-93-4	0.50 µg/kg	<0.50	<0.50	<0.50	
Endrin ketone	53494-70-5	0.50 µg/kg	<0.50	<0.50	<0.50	
Heptachlor	76-44-8	0.50 µg/kg	<0.50	<0.50	<0.50	
Heptachlor epoxide	1024-57-3	0.50 µg/kg	<0.50	<0.50	<0.50	
Hexachlorobenzene (HCB)	118-74-1	0.50 µg/kg	<0.50	<0.50	<0.50	
gamma-BHC	58-89-9	0.50 µg/kg	<0.50	<0.50	<0.50	
Methoxychlor	72-43-5	0.50 µg/kg	<0.50	<0.50	<0.50	
cis-Chlordane	5103-71-9	0.50 µg/kg	<0.50	<0.50	<0.50	
trans-Chlordane	5103-74-2	0.50 µg/kg	<0.50	<0.50	<0.50	
Total Chlordane		0.50 µg/kg	<0.50	<0.50	<0.50	
EP131B: Polychlorinated Biphenyls	(as Aroclors)	·				
Total Polychlorinated biphenyls		5.0 µg/kg	<5.0	<5.0	<5.0	
Aroclor 1016	12974-11-2	5.0 µg/kg	<5.0	<5.0	<5.0	
Aroclor 1221	11104-28-2	5.0 µg/kg	<5.0	<5.0	<5.0	
Aroclor 1232	11141-16-5	5.0 µg/kg	<5.0	<5.0	<5.0	
Aroclor 1242	53469-21-9	5.0 µg/kg	<5.0	<5.0	<5.0	
Aroclor 1248	12672-29-6	5.0 µg/kg	<5.0	<5.0	<5.0	
Aroclor 1254	11097-69-1	5.0 µg/kg	<5.0	<5.0	<5.0	
Aroclor 1260	11096-82-5	5.0 µg/kg	<5.0	<5.0	<5.0	
EP132B: Polynuclear Aromatic Hyd	rocarbons			•	•	· · · · · · · · · · · · · · · · · · ·
3-Methylcholanthrene	56-49-5	10 µg/kg	<10	<10	<10	
2-Methylnaphthalene	91-57-6	10 µg/kg	50	40	40	
7.12-Dimethylbenz(a)anthracene	57-97-6	10 µg/kg	<10	<10	<10	
Acenaphthene	83-32-9	10 µg/kg	<10	<10	<10	
Acenaphthylene	208-96-8	10 µg/kg	30	<10	20	

Page Number: 14 of 15Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703904

			Client Sample ID :	H38	QC3	QC4	
Analytical Results	Sample Matrix Type / Description :		SEDIMENT	SEDIMENT	SEDIMENT		
-	Sample Date / Time :		26 Mar 2007	26 Mar 2007	26 Mar 2007		
			15:00	15:00	15:00		
	Laboratory Sample ID :						
Analyte	CAS number	LOF	Units	ES0703904-016	ES0703904-017	ES0703904-018	
EP132B: Polynuclear Aromatic Hydr	rocarbons						
Anthracene	120-12-7	10	µg/kg	20	<10	10	
Benz(a)anthracene	56-55-3	10	µg/kg	130	20	40	
Benzo(a)pyrene	50-32-8	10	µg/kg	160	30	60	
Benzo(b)fluoranthene	205-99-2	10	µg/kg	180	40	70	
Benzo(e)pyrene	192-97-2	10	µg/kg	120	30	50	
Benzo(g.h.i)perylene	191-24-2	10	µg/kg	120	30	50	
Benzo(k)fluoranthene	207-08-9	10	µg/kg	140	30	50	
Chrysene	218-01-9	10	µg/kg	150	30	60	
Coronene	191-07-1	10	µg/kg	40	<10	20	
Dibenz(a.h)anthracene	53-70-3	10	µg/kg	30	<10	<10	
Fluoranthene	206-44-0	10	µg/kg	240	50	80	
Fluorene	86-73-7	10	µg/kg	10	<10	<10	
Indeno(1.2.3.cd)pyrene	193-39-5	10	µg/kg	90	20	40	
N-2-Fluorenyl Acetamide	53-96-3	100	µg/kg	<100	<100	<100	
Naphthalene	91-20-3	10	µg/kg	50	40	40	
Perylene	198-55-0	10	µg/kg	60	20	30	
Phenanthrene	85-01-8	10	µg/kg	70	30	40	
Pyrene	129-00-0	10	µg/kg	240	50	90	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.1	%	96.5	108	100	
Toluene-D8	2037-26-5	0.1	%	91.2	102	95.1	
4-Bromofluorobenzene	460-00-4	0.1	%	77.2	86.8	82.3	
EP130S: Organophosphorus Pestici	ide Surrogate						·
DEF	78-48-8	0.1	%	26.5	37.7	38.2	
EP131S: OC Pesticide Surrogate						-	
Dibromo-DDE	21655-73-2	0.1	%	30.2	42.4	56.1	
EP131T: PCB Surrogate					•		· ·
Decachlorobiphenyl	2051-24-3	0.1	%	37.1	47.0	56.8	
EP132T: Base/Neutral Extractable St							
2-Fluorobiphenyl	321-60-8	0.1	%	57.9	59.9	60.3	
Anthracene-d10	1719-06-8	0.1		63.4	66.7	67.6	
4-Terphenyl-d14	1718-51-0	0.1		61.7	64.7	66.4	

Page Number: 15 of 15Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703904

Matrix Type: SOIL - Surrogate Control Limits

Method name	Analyte name	Lower Limit	Upper Limit
EP080: TPH Volatiles/BTEX		•	
EP080S: TPH(V)/BTEX Surrogates	1,2-Dichloroethane-D4	80	120
	Toluene-D8	81	117
	4-Bromofluorobenzene	74	121
EP130: Organophosphorus Pesticides (Ultra-trace)			
EP130S: Organophosphorus Pesticide Surrogate	DEF	51.3	136.9
EP131A: Organochlorine Pesticides (Ultra-trace)			
EP131S: OC Pesticide Surrogate	Dibromo-DDE	10	136
EP131B: PCB's (Ultra-trace)			
EP131T: PCB Surrogate	Decachlorobiphenyl	10	164
EP132: Semivolatile Compounds by GCMS(SIM - Ultra-trace)			
EP132T: Base/Neutral Extractable Surrogates	2-Fluorobiphenyl	30	115
	Anthracene-d10	27	133
	4-Terphenyl-d14	18	137

Surrogate Control Limits

ALS Environmental

QUALITY CONTROL REPORT

Client	:	URS AUSTRALIA (NSW) PTY LTD	Laboratory	: Environmental Division Sydney	Page	:	1 of 18
Contact	:	CARSTEN MATTHAI LEVEL 3, 116 MILLER STREET NORTH	Contact	: Victor Kedicioglu : 277-289 Woodpark Road Smithfield	Work order		ES0703904
Address	:	SYDNEY NSW AUSTRALIA 2060	Address	NSW Australia 2164	work order	:	200703904
		NOW AUSTRALIA 2000			Amendment No.	:	3
Project	:	42317595 Sediment Study	Quote number	: SY/019/07 V2	Date received	:	27 Mar 2007
Order number	:	- Not provided -			Date issued	:	10 May 2007
C-O-C number	:	- Not provided -					
Site	:	- Not provided -					
E-mail	:	carsten_matthai@urscorp.com	E-mail	: Victor.Kedicioglu@alsenviro.com	No. of samples		
Telephone	:	89255500	Telephone	: 61-2-8784 8555	Received	:	18
Facsimile	:	89255555	Facsimile	: 61-2-8784 8500	Analysed	:	18

This final report for the ALSE work order reference ES0703904 supersedes any previous reports with this reference.

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Laboratory Duplicates (DUP); Relative Percentage Difference (RPD) and Acceptance Limits
- 1 Method Blank (MB) and Laboratory Control Samples (LCS); Recovery and Acceptance Limits
- 1 Matrix Spikes (MS); Recovery and Acceptance Limits

Work order specific comments

EP130, EP131A: Matrix spike and surrogate recoveries are low or not determined due to sample matrix effects.

ALSE - Excellence in Analytical Testing

NATA Accredited Laboratory - 825

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IED 17025

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic
signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

ument is issued in	Signatory	Department
ance with NATA's	Pabi Subba	Organics - NATA 825 (10911 - Sydney)
ation requirements.	PHALAK INTHAKESONE	Organics - NATA 825 (10911 - Sydney)
ted for compliance	Rassem Ayoubi	Organics - NATA 825 (10911 - Sydney)

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703904	Page Number	: 2 of 18	(ALS)
Project	:	42317595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	: 10 May 2007	ALS Environmental

Quality Control Report - Laboratory Duplicates (DUP)

The quality control term **Laboratory Duplicate** refers to an intralaboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations:* **LOR** = *Limit* of *Reporting,* **RPD** = *Relative Percent Difference.* * Indicates failed QC. The permitted ranges for the RPD of Laboratory Duplicates (relative percent deviation) are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting:- Result < 10 times LOR, no limit - Result between 10 and 20 times LOR, 0% - 50% - Result > 20 times LOR, 0% - 20%

Matrix Type: SOIL

						, <i>Duplicated</i> (DO 1) http:
Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
EA055: Moisture Content						
EA055: Moisture Conten	t - (QC Lot: 381165)			%	%	%
ES0703904-001	H7	Moisture Content (dried @ 103°C)	1.0 %	74.0	71.5	3.4
ES0703904-010	H24	Moisture Content (dried @ 103°C)	1.0 %	76.0	76.2	0.2
EP080/071: Total Petroleu	Im Hydrocarbons			•	•	
EP080/071: Total Petrole	um Hydrocarbons - (QC Lot: 381125)			mg/kg	mg/kg	%
ES0703904-001	H7	C6 - C9 Fraction	10 mg/kg	<10	<10	0.0
ES0703904-011	H25	C6 - C9 Fraction	10 mg/kg	<10	<10	0.0
EP080/071: Total Petrole	um Hydrocarbons - (QC Lot: 381390)			mg/kg	mg/kg	%
ES0703904-001	H7	C10 - C14 Fraction	50 mg/kg	<110	<100	0.0
		C15 - C28 Fraction	100 mg/kg	<220	<200	7.8
		C29 - C36 Fraction	100 mg/kg	<220	<200	7.8
ES0703904-011	H25	C10 - C14 Fraction	50 mg/kg	<50	<50	0.0
		C15 - C28 Fraction	100 mg/kg	<100	<100	0.0
		C29 - C36 Fraction	100 mg/kg	<100	<100	0.0
EP080: BTEX					•	
EP080: BTEX - (QC Lot:	381125)			mg/kg	mg/kg	%
ES0703904-001	Н7	Benzene	0.1 mg/kg	<0.2	<0.2	0.0
		Toluene	0.1 mg/kg	<0.2	<0.2	0.0
		Ethylbenzene	0.1 mg/kg	<0.2	<0.2	0.0
		meta- & para-Xylene	0.1 mg/kg	<0.2	<0.2	0.0
		ortho-Xylene	0.1 mg/kg	<0.2	<0.2	0.0
ES0703904-011	H25	Benzene	0.1 mg/kg	<0.1	<0.1	0.0
		Toluene	0.1 mg/kg	<0.1	<0.1	0.0
		Ethylbenzene	0.1 mg/kg	<0.1	<0.1	0.0
		meta- & para-Xylene	0.1 mg/kg	<0.1	<0.1	0.0
		ortho-Xylene	0.1 mg/kg	<0.1	<0.1	0.0

Laboratory Duplicates (DUP) Report

ALS	
LS Environmenta	

: 3 of 18

Page Number

42317595 Sediment Study : 10 May 2007 Project ALS Quote Reference : SY/019/07 V2 Issue Date : Matrix Type: SOIL Laboratory Duplicates (DUP) Report Laboratory Sample ID Client Sample ID Analyte name LOR **Original Result** Duplicate Result RPD EP130A: Organophosphorus Pesticides (Ultra-trace) EP130A: Organophosphorus Pesticides (Ultra-trace) - (QC Lot: 381238) % µg/kg µg/kg ES0703904-001 H7 Bromophos-ethyl 10 µg/kg <10 <10 0.0 Carbophenothion 10 µg/kg <10 <10 0.0 Chlorfenvinphos (E) <10.0 <10.0 0.0 10.0 µg/kg Chlorfenvinphos (Z) 10 µq/kq <10 <10 0.0 0.0 Chlorpyrifos 10 µg/kg <10 <10 Chlorpyrifos-methyl <10 <10 0.0 10 µg/kg Demeton-S-methyl 0.0 10 µq/kq <10 <10 Diazinon 10 µg/kg <10 <10 0.0 Dichlorvos <10 <10 0.0 10 µg/kg Dimethoate <10 <10 0.0 10 µg/kg Ethion <10 <10 0.0 10 µg/kg Fenamiphos 10 µg/kg <10 <10 0.0 Fenthion 10 µg/kg <10 <10 0.0 Malathion <10 <10 0.0 10 µg/kg Methyl Azinphos 10 µg/kg <10 <10 0.0 <10 0.0 Monocrotophos 10 µg/kg <10 Parathion 10 µg/kg <10 <10 0.0 Parathion-methyl 10 µg/kg <10 <10 0.0 Pirimphos-ethyl 10 µg/kg <10 <10 0.0 Prothiofos <10 <10 0.0 10 µg/kg ES0703904-011 H25 Bromophos-ethyl <10 <10 0.0 10 µg/kg Carbophenothion 10 µg/kg <10 <10 0.0 Chlorfenvinphos (E) 10.0 µg/kg <10.0 <10.0 0.0 Chlorfenvinphos (Z) 10 µg/kg <10 <10 0.0 Chlorpyrifos 10 µg/kg <10 <10 0.0 Chlorpyrifos-methyl <10 <10 0.0 10 µg/kg Demeton-S-methyl 10 µg/kg <10 <10 0.0 Diazinon 10 µg/kg <10 <10 0.0

10 µg/kg

<10

<10

: ES0703904

Work Order

Dichlorvos

URS AUSTRALIA (NSW) PTY LTD

Client

:

0.0 A Campbell Brothers Limited Company

ALS
ALS Environmental

: 4 of 18

Page Number

42317595 Sediment Study : 10 May 2007 Project ALS Quote Reference : SY/019/07 V2 Issue Date : Matrix Type: SOIL Laboratory Duplicates (DUP) Report Laboratory Sample ID Client Sample ID Analyte name LOR **Original Result** Duplicate Result RPD EP130A: Organophosphorus Pesticides (Ultra-trace) - continued EP130A: Organophosphorus Pesticides (Ultra-trace) - (QC Lot: 381238) - continued % µg/kg µg/kg ES0703904-011 H25 Dimethoate <10 <10 0.0 10 µg/kg Ethion 10 µq/kq <10 <10 0.0 Fenamiphos 10 µg/kg <10 <10 0.0 0.0 Fenthion 10 µg/kg <10 <10 Malathion <10 <10 0.0 10 µg/kg Methyl Azinphos 10 µg/kg <10 <10 0.0 Monocrotophos 10 µg/kg <10 <10 0.0 Parathion 10 µg/kg <10 <10 0.0 Parathion-methyl 10 µg/kg <10 <10 0.0 Pirimphos-ethyl 10 µg/kg <10 <10 0.0 Prothiofos <10 <10 0.0 10 µg/kg EP131A: Organochlorine Pesticides EP131A: Organochlorine Pesticides - (QC Lot: 381239) µg/kg µg/kg % ES0703904-001 H7 Aldrin 0.0 0.50 µg/kg < 0.50 < 0.50 alpha-BHC < 0.50 < 0.50 0.0 0.50 µg/kg beta-BHC 0.50 µg/kg < 0.50 < 0.50 0.0 delta-BHC < 0.50 < 0.50 0.50 µg/kg 0.0 4,4'-DDD 0.50 µg/kg < 0.50 <0.50 0.0 4.4'-DDE < 0.50 0.50 µg/kg < 0.50 0.0 4.4'-DDT 0.50 µg/kg < 0.50 < 0.50 0.0 DDT (total) < 0.50 < 0.50 0.0 0.50 µg/kg Dieldrin <0.50 <0.50 0.0 0.50 µg/kg alpha-Endosulfan 0.50 µg/kg < 0.50 <0.50 0.0 beta-Endosulfan 0.50 µg/kg < 0.50 < 0.50 0.0 Endosulfan sulfate < 0.50 0.50 µg/kg < 0.50 0.0 Endosulfan (sum) 0.50 µg/kg < 0.50 < 0.50 0.0 < 0.50 Endrin 0.50 µg/kg < 0.50 0.0 Endrin aldehyde 0.50 µg/kg < 0.50 < 0.50 0.0 Endrin ketone 0.50 µg/kg < 0.50 <0.50 0.0

: ES0703904

Work Order

URS AUSTRALIA (NSW) PTY LTD

Client

:

e	ALS)
	nuironmentai

.

Matrix Type: SOIL Laboratory Duplicates (DUP) Report Laboratory Sample ID Client Sample ID Analyte name LOR **Original Result** Duplicate Result RPD EP131A: Organochlorine Pesticides - continued EP131A: Organochlorine Pesticides - (QC Lot: 381239) - continued % µg/kg µg/kg ES0703904-001 H7 Heptachlor 0.50 µg/kg < 0.50 < 0.50 0.0 Heptachlor epoxide 0.50 µg/kg < 0.50 < 0.50 0.0 Hexachlorobenzene (HCB) 0.50 µg/kg < 0.50 < 0.50 0.0 gamma-BHC <0.50 0.0 0.50 µg/kg < 0.50 Methoxychlor <0.50 <0.50 0.0 0.50 µg/kg cis-Chlordane 0.50 µg/kg <0.50 <0.50 0.0 trans-Chlordane 0.50 µg/kg < 0.50 < 0.50 0.0 Total Chlordane (sum) 0.50 µg/kg <0.50 <0.50 0.0 ES0703904-011 H25 Aldrin 0.50 µg/kg <0.50 <0.50 0.0 alpha-BHC 0.50 µg/kg <0.50 <0.50 0.0 beta-BHC <0.50 0.0 0.50 µg/kg <0.50 delta-BHC 0.50 µg/kg <0.50 <0.50 0.0 4.4'-DDD 0.50 µg/kg < 0.50 < 0.50 0.0 4.4'-DDE 0.50 µg/kg < 0.50 < 0.50 0.0 4,4'-DDT <0.50 <0.50 0.0 0.50 µg/kg DDT (total) 0.50 µg/kg <0.50 <0.50 0.0 Dieldrin 0.50 µg/kg <0.50 <0.50 0.0 alpha-Endosulfan <0.50 <0.50 0.0 0.50 µg/kg beta-Endosulfan 0.50 µg/kg <0.50 <0.50 0.0 Endosulfan sulfate <0.50 <0.50 0.0 0.50 µg/kg Endosulfan (sum) 0.50 µg/kg <0.50 <0.50 0.0 Endrin <0.50 <0.50 0.0 0.50 µg/kg Endrin aldehyde <0.50 <0.50 0.0 0.50 µg/kg Endrin ketone 0.50 µg/kg <0.50 <0.50 0.0 Heptachlor <0.50 <0.50 0.0 0.50 µg/kg Heptachlor epoxide 0.50 µg/kg <0.50 <0.50 0.0 Hexachlorobenzene (HCB) < 0.50 < 0.50 0.0 0.50 µg/kg gamma-BHC 0.50 µg/kg <0.50 <0.50 0.0 Methoxychlor 0.50 µg/kg < 0.50 <0.50 0.0

42317595 Sediment Study Project :

URS AUSTRALIA (NSW) PTY LTD Client :

Work Order

: ES0703904 ALS Quote Reference :

SY/019/07 V2

: 5 of 18 Page Number : 10 May 2007 Issue Date

ALS	
LS Environmenta	1

trk Type: SOL Laboratory Duplicates (LOP) R Laboratory Sample ID Clinat Sample ID Diant Sample ID Daplicate Result Rep 0 1313.1 Organochlorine Pesticides - Orieud Diginal Result Daplicate Result Rep 0 1913.1 Organochlorine Pesticides - Orieud UPN Cognochlorine Pesticides - Orieud 0.50 UgNg <0.50 <0.50 0.00 ES0703904-011 It25 Clic-Chiordane 0.50 UgNg <0.50 <0.50 0.00 1318. Polychlorinated Biphenyls (a Arociors) - UPC Cloci: 381240)		USTRALIA (NSW) PTY LTD 95 Sediment Study	Work Order : ES070390 ALS Quote Reference : SY/019/07 \		Page Number : 6 of Issue Date : 10 l		(ALS) S Environment
P131A: Organochlorine Pestickides - Continued up/kg up/kg K P191A: Organochlorine Pestickides - (Oc Lut: 381239) - continued icit-Chirdiana 0.50 µg/kg <0.50 <0.50 <0.00 Total Chirdiana 0.50 µg/kg <0.50 <0.50 <0.50 <0.00 P1318: Polychorinated Biptenyls (as Aroclory) <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	latrix Type: SOIL						
P191A: Organochlorine Pesificides - (GC Lot: 38129) - continued dis-Chloridane 0.60 µghg % 0.60 µghg 4.60 µghg 4	Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
ES070300-011H2H2Colordance rane.Chordance (mas.Chordance sum0.50 µpkg40.5040.500.0Total Chordance (mas.Chordance (mas.Chordance)Total Chordance (mas.Chordance)0.50 µpkg40.5040.500.01318: Polychiorinated Bjewyts (as Acciors)Total Chordance (mas.Chordance)1000.50 µpkg45.0045.000.01318: Polychiorinated Bjewyts (as Acciors)Total Polychiorinated biphonyls5.0 µpkg45.0045.000.01318: Polychiorinated DiversityTotal Polychiorinated biphonyls5.0 µpkg45.0045.000.0Arocher 10165.0 µpkg45.0045.0045.000.0Arocher 12215.0 µpkg45.0045.0045.000.0Arocher 12545.0 µpkg45.0045.000.00.0Arocher 12645.0 µpkg45.0045.0045.000.0Arocher 12	EP131A: Organochlorine	Pesticides - continued			•		
trans-Chordane0.50 µg/g-0.50-0.500.0073B: Polychoinated Buterrys (at Arcoicry) - (OC Lot: 33240)500 µg/g-0.50-0.50-0.50ES070300-001IToal Polychoinated biphenyls5.0 µg/g-0.50-0.50-0.50ES070300-001INumber of Color: 31240)Toal Polychoinated biphenyls5.0 µg/g-0.50-0.50-0.50ES070300-001INumber of Color: 31240Acdori 1/2-0.50 µg/g-0.50 <td< td=""><td>EP131A: Organochlorine</td><td>Pesticides - (QC Lot: 381239) - continued</td><td></td><td></td><td>µg/kg</td><td>µg/kg</td><td>%</td></td<>	EP131A: Organochlorine	Pesticides - (QC Lot: 381239) - continued			µg/kg	µg/kg	%
Total Chironane (sum) 0.80 ugs TSB: Polychorinated Biphenyls (a Anodors) - (QC Lot: 381240) Total Polychorinated biphenyls 5.00 ugs/g <0.00	ES0703904-011	H25	cis-Chlordane	0.50 µg/kg	<0.50	<0.50	0.0
H318: Polychlorinated Biphenyls (as Arociors) Total Polychlorinated biphenyls 5.0 µg/kg 4.50 4.60 0.0 ES0703004-001 H7 Total Polychlorinated biphenyls 5.0 µg/kg 4.50 4.50 0.0 Arocior 1016 5.0 µg/kg 4.50 4.50 0.0 Arocior 1221 5.0 µg/kg 4.50 4.50 0.0 Arocior 1242 5.0 µg/kg 4.50 4.50 0.0 Arocior 1242 5.0 µg/kg 4.50 4.50 0.0 Arocior 1248 5.0 µg/kg 4.50 4.50 0.0 Arocior 1248 5.0 µg/kg 4.50 4.50 0.0 Arocior 1240 5.0 µg/kg 4.50 4.50 0.0 Arocior 1242 5.0 µg/kg 4.50 4.50 0.0 Arocior 1240 5.0 µg/kg 4.50 4.50 0.0 Arocior 1242 5.0 µg/kg 4.50 4.50 0.0 Arocior 1240 5.0 µg/kg 4.50 4.50 0.0 Arocior 1242 5.0 µg/k			trans-Chlordane	0.50 µg/kg	<0.50	<0.50	0.0
EP31B: Polychlorinated Bipheryls (as Arcolors) - (AC Lot: 381240) Total Polychlorinated bipheryls 5.0 µg/kg <.0.0 ES0703904-001 H7 Total Polychlorinated bipheryls 5.0 µg/kg <.6.0			Total Chlordane (sum)	0.50 µg/kg	<0.50	<0.50	0.0
ES070304-001 HT Total Polychiorinated biphenyls 5.0 µg/kg <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0<	EP131B: Polychlorinated	Biphenyls (as Aroclors)					
Number of the second	EP131B: Polychlorinated	d Biphenyls (as Aroclors) - (QC Lot: 381240)			µg/kg	µg/kg	%
Arodor 1221 S.G. µg/kg <.S.O <.S.O 0.0 Arodor 1232 S.O. µg/kg <.S.O	ES0703904-001	H7	Total Polychlorinated biphenyls	5.0 µg/kg	<5.0	<5.0	0.0
Arcdor 1232 5.0 µg/kg <.6.0 <.6.0 0.0 Arcdor 1242 5.0 µg/kg <.6.0			Aroclor 1016	5.0 µg/kg	<5.0	<5.0	0.0
Arcelor 1242 5.0 µg/kg <.5.0 <.5.0 <.5.0 0.0 Arcolor 1248 5.0 µg/kg <.5.0			Aroclor 1221	5.0 µg/kg	<5.0	<5.0	0.0
Arodor 1248 6.0 g/kg < E50703904-011 H25 Arodor 1248 5.0 ug/kg <.5.0			Aroclor 1232	5.0 µg/kg	<5.0	<5.0	0.0
Arcler 1254 5.0 µ/kg <.0 Arcler 1260 5.0 µ/kg <.0			Aroclor 1242	5.0 µg/kg	<5.0	<5.0	0.0
ES0703904-011 Arodor 1260 5.0 u/s0 <.5.0			Aroclor 1248	5.0 µg/kg	<5.0	<5.0	0.0
ES0703904-011 H25 Total Polychlorinated biphenyls 5.0 µ3/kg <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.			Aroclor 1254	5.0 µg/kg	<5.0	<5.0	0.0
Arcior 1016 5.0 µg/kg <.0.0 <.0.0 Arcior 1016 5.0 µg/kg <.0.0			Aroclor 1260	5.0 µg/kg	<5.0	<5.0	0.0
Arcicor 1221 5.0 u/sd/g 6.0 6.0 Arcicor 1221 5.0 u/s/g 6.0 6.0 0.0 Arcicor 1232 5.0 u/s/g 6.0 6.0 0.0 Arcicor 1242 5.0 u/s/g 6.0 6.0 0.0 Arcicor 1242 5.0 u/s/g 6.0 6.0 0.0 Arcicor 1248 5.0 u/s/g 6.0 6.0 0.0 Arcicor 1260 5.0 u/s/g 6.0 6.0 0.0 Arcicor 1288: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381234) ysss ysss ysss 0.0 P132B: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381234) ysss ysss ysss ysss 0.0 P132B: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381234) Stordy 120 10 u/g/g 10 0.0 P132B: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381234) Stordy 120 10 u/g/g 10 0.0 P132B: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381234) Stordy 120 10 u/g/g 10 0.0 ES0703904-001 H7 Stordy 120 10 u/g/g <	ES0703904-011	H25	Total Polychlorinated biphenyls	5.0 µg/kg	<5.0	<5.0	0.0
Arocior 1232 5.0 µg/kg <.0.0 <.0.0 Arocior 1232 5.0 µg/kg <.6.0			Aroclor 1016	5.0 µg/kg	<5.0	<5.0	0.0
Arocior 1242 5.0 µg/kg <.0.0 <.0.0 Arocior 1248 5.0 µg/kg <.0.0			Aroclor 1221	5.0 µg/kg	<5.0	<5.0	0.0
Arocior 1248 5.0 µg/kg <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <td></td> <td></td> <td>Aroclor 1232</td> <td>5.0 µg/kg</td> <td><5.0</td> <td><5.0</td> <td>0.0</td>			Aroclor 1232	5.0 µg/kg	<5.0	<5.0	0.0
Arocior 1254 5.0 µg/kg <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <td></td> <td></td> <td>Aroclor 1242</td> <td>5.0 µg/kg</td> <td><5.0</td> <td><5.0</td> <td>0.0</td>			Aroclor 1242	5.0 µg/kg	<5.0	<5.0	0.0
иссов иссов <t< td=""><td></td><td></td><td>Aroclor 1248</td><td>5.0 µg/kg</td><td><5.0</td><td><5.0</td><td>0.0</td></t<>			Aroclor 1248	5.0 µg/kg	<5.0	<5.0	0.0
P132B: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381234) µg/kg µg/kg % ES0703904-001 H7 3-Methylcholanthrene 10 µg/kg <10			Aroclor 1254	5.0 µg/kg	<5.0	<5.0	0.0
P132B: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381234) 3-Methylcholanthrene 10 µg/kg vg/kg µg/kg 10 µg/kg 0.0 ES0703904-001 H7 3-Methylcholanthrene 10 µg/kg 70 70 0.0 2-Methylnaphthalene 10 µg/kg 70 70 0.0 7,12-Dimethylbenz(a)anthracene 10 µg/kg <10			Aroclor 1260	5.0 µg/kg	<5.0	<5.0	0.0
ES0703904-001 H7 3-Methylcholanthrene 10 μg/kg <10 <10 0.0 2-Methylnaphthalene 10 μg/kg 70 70 0.0 7,12-Dimethylbenz(a)anthracene 10 μg/kg <10	P132B: Polynuclear Aro	matic Hydrocarbons					
2-Methylnaphthalene 10 µg/kg 70 0.0 7,12-Dimethylbenz(a)anthracene 10 µg/kg <10	EP132B: Polynuclear Arc	omatic Hydrocarbons - (QC Lot: 381234)			µg/kg	µg/kg	%
7,12-Dimethylbenz(a)anthracene 10 µg/kg <10 <10 0.0 Acenaphthene 10 µg/kg <10	ES0703904-001	H7	3-Methylcholanthrene	10 µg/kg	<10	<10	0.0
Acenaphthene10 µg/kg<10<100.0Acenaphthylene10 µg/kg<10			2-Methylnaphthalene	10 µg/kg	70	70	0.0
Acenaphthylene10 µg/kg<10100.0			7,12-Dimethylbenz(a)anthracene	10 µg/kg	<10	<10	0.0
			Acenaphthene	10 µg/kg	<10	<10	0.0
Anthracene 10 µg/kg 10 20 0.0			Acenaphthylene	10 µg/kg	<10	10	0.0
			Anthracene	10 µg/kg	10	20	0.0

ALS
LS Environmenta

: 7 of 18

Page Number

42317595 Sediment Study : 10 May 2007 Project ALS Quote Reference : SY/019/07 V2 Issue Date : . Matrix Type: SOIL Laboratory Duplicates (DUP) Report Laboratory Sample ID Client Sample ID Analyte name LOR **Original Result** Duplicate Result RPD EP132B: Polynuclear Aromatic Hydrocarbons - continued EP132B: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381234) - continued % µg/kg µg/kg ES0703904-001 H7 50 50 Benz(a)anthracene 10 µq/kq 0.0 Benzo(a)pyrene 10 µq/kq 70 70 0.0 Benzo(b)fluoranthene 10 µg/kg 60 70 14.9 50 50 0.0 Benzo(e)pyrene 10 µg/kg Benzo(q,h,i)pervlene 60 60 0.0 10 µg/kg 60 50 Benzo(k)fluoranthene 10 µg/kg 0.0 Chrysene 10 µg/kg 60 60 0.0 Coronene 10 µg/kg 10 10 0.0 Dibenz(a,h)anthracene 10 µg/kg 10 10 0.0 Fluoranthene 10 µg/kg 90 100 0.0 Fluorene 10 10 0.0 10 µg/kg 50 Indeno(1,2,3,cd)pyrene 10 µq/kq 40 0.0 N-2-Fluorenyl Acetamide 100 µg/kg <100 <100 0.0 Naphthalene 10 µg/kg 70 70 0.0 30 Perylene 30 0.0 10 µg/kg 50 Phenanthrene 10 µq/kq 50 0.0 Pyrene 10 µg/kg 100 100 0.0 ES0703904-011 H25 3-Methylcholanthrene <10 <10 0.0 10 µg/kg 2-Methylnaphthalene 10 µg/kg 30 20 0.0 7,12-Dimethylbenz(a)anthracene 10 µg/kg <10 <10 0.0 Acenaphthene 10 µg/kg <10 <10 0.0 Acenaphthylene <10 <10 0.0 10 µg/kg Anthracene <10 <10 0.0 10 µg/kg Benz(a)anthracene 10 µg/kg 20 10 0.0 20 10 0.0 Benzo(a)pyrene 10 µg/kg 20 Benzo(b)fluoranthene 10 µg/kg 10 0.0 Benzo(e)pyrene 10 µg/kg 10 10 0.0 Benzo(g,h,i)perylene 10 µg/kg 20 10 0.0

10 µg/kg

10

10

: ES0703904

Work Order

Benzo(k)fluoranthene

URS AUSTRALIA (NSW) PTY LTD

Client

:

0.0

(ALS)
ALS Environmental

: 8 of 18

: 10 May 2007

Page Number

Issue Date

Matrix Type: SOIL Laboratory Duplicates (DUP) Report Laboratory Sample ID Client Sample ID Analyte name LOR Original Result Duplicate Result RPD EP132B: Polynuclear Aromatic Hydrocarbons - continued EP132B: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381234) - continued % µg/kg µg/kg ES0703904-011 H25 Chrysene 20 10 0.0 10 µg/kg Coronene 10 µg/kg <10 <10 0.0 Dibenz(a,h)anthracene 10 µg/kg <10 <10 0.0 Fluoranthene 10 µg/kg 50 30 44.7 Fluorene <10 <10 0.0 10 µg/kg Indeno(1,2,3,cd)pyrene 10 <10 0.0 10 µg/kg N-2-Fluorenyl Acetamide <100 100 µg/kg <100 0.0 Naphthalene 10 µg/kg 30 20 0.0 Perylene 10 µg/kg <10 <10 0.0 Phenanthrene 40 20 46.1 10 µg/kg Pyrene 10 µg/kg 40 30 37.9

: ES0703904

:

SY/019/07 V2

Work Order

ALS Quote Reference

URS AUSTRALIA (NSW) PTY LTD

42317595 Sediment Study

Client

Project

:

:

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703904	Page Number	:	9 of 18	(ALS)
Project	:	42317595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	:	10 May 2007	ALS Environment

Quality Control Report - Method Blank (MB) and Laboratory Control Samples (LCS)

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of actual laboratory data. Flagged outliers on control limits for inorganics tests may be within the NEPM specified data quality objective of recoveries in the range of 70 to 130%. Where this occurs, no corrective action is taken. Abbreviations: LOR = Limit of reporting.

Matrix Type: SOIL

Method Blank (MB) and Laboratory Control Samples (LCS) Report

		Method blank	Actual	Results	Recovery Limits		
		result	Spike concentration	Spike Recovery	Dynamic R	ecovery Limits	
Analyte name	LOR			LCS	Low	High	
EP080/071: Total Petroleum Hydrocarbons							
EP080/071: Total Petroleum Hydrocarbons - (QC Lot: 381125)		mg/kg	mg/kg	%	%	%	
C6 - C9 Fraction	10 mg/kg		26	101	68.4	128	
	10 mg/kg	<10					
EP080/071: Total Petroleum Hydrocarbons - (QC Lot: 381390)		mg/kg	mg/kg	%	%	%	
C10 - C14 Fraction	50 mg/kg	<50					
	50 mg/kg		200	91.0	75.2	116	
C15 - C28 Fraction	100 mg/kg	<100					
	100 mg/kg		200	91.0	75.3	113	
C29 - C36 Fraction	100 mg/kg		200	96.0	72.6	117	
	100 mg/kg	<100					
EP080: BTEX							
EP080: BTEX - (QC Lot: 381125)		mg/kg	mg/kg	%	%	%	
Benzene	0.2 mg/kg		1	108	67.5	125	
	0.2 mg/kg	<0.2					
Ethylbenzene	0.5 mg/kg	<0.5					
: BTEX D: BTEX - (QC Lot: 381125) zene Ibenzene I- & para-Xylene	0.5 mg/kg		1	106	65.3	126	
meta- & para-Xylene	0.5 mg/kg	<0.5					
	0.5 mg/kg		2	103	66.5	124	
ortho-Xylene	0.5 mg/kg		1	103	66.7	123	
	0.5 mg/kg	<0.5					
Toluene	0.5 mg/kg	<0.5					
	0.5 mg/kg		1	89.2	69	122	
EP130A: Organophosphorus Pesticides (Ultra-trace)							
EP130A: Organophosphorus Pesticides (Ultra-trace) - (QC Lot: 381238)		µg/kg	µg/kg	%	%	%	

Ilient : URS AUSTRALIA (NSW) PTY LTD roject : 42317595 Sediment Study	Work Order ALS Quote Reference	: ES0703904 : SY/019/07 V2		Page Number : 10 of Issue Date : 10 M		S Environmen				
latrix Type: SOIL	-		Method Blank (MB) and Laboratory Control Samples (LCS) Rep							
		Method blank	Actual	Results	Recovery Limits					
		result	Spike concentration	Spike Recovery	Dynamic Recovery Limits					
Analyte name	LOR			LCS	Low	High				
P130A: Organophosphorus Pesticides (Ultra-trace) - continued				I						
EP130A: Organophosphorus Pesticides (Ultra-trace) - (QC Lot: 381238)	- continued	µg/kg	µg/kg	%	%	%				
Methyl Azinphos	10 µg/kg		50	35.3	8.13	159				
	10 µg/kg	<10								
Bromophos-ethyl	10 µg/kg	<10								
	10 µg/kg		50	120	36.9	142				
Carbophenothion	10 µg/kg		50	84.7	0.5	157				
fenvinphos (E)	10 µg/kg	<10								
Chlorfenvinphos (E)	10 µg/kg		5	94.4	50.3	137				
	10.0 µg/kg	<10.0								
Chlorfenvinphos (Z)	10 µg/kg	<10								
	10 µg/kg		45	110	55.9	152				
Chlorpyrifos	10 µg/kg		50	112	49	140				
	10 µg/kg	<10								
Chlorpyrifos-methyl	10 µg/kg		50	119	28.1	142				
	10 µg/kg	<10								
Demeton-S-methyl	10 µg/kg		50	120	36.6	172				
neton-S-methyl	10 µg/kg	<10								
Diazinon	10 µg/kg		50	114	37.2	148				
pyrifos-methyl eton-S-methyl non prvos	10 µg/kg	<10								
Dichlorvos	10 µg/kg		50	116	32.7	153				
arpyrifos prpyrifos-methyl neton-S-methyl tinon llorvos ethoate	10 µg/kg	<10								
Dimethoate	10 µg/kg	<10								
	10 µg/kg		50	113	33.2	150				
Ethion	10 µg/kg		50	91.5	44	146				
	10 µg/kg	<10								
Fenamiphos	10 µg/kg		50	87.2	3.08	162				
	10 µg/kg	<10								
Fenthion	10 µg/kg		50	124	10.6	157				
	10 µg/kg	<10								
Malathion	10 µg/kg		50	114	38.1	143				
	10 µg/kg	<10								

Client : URS AUSTRALIA (NSW) PTY LTD Project : 42317595 Sediment Study	Work Order ALS Quote Reference	: ES0703904 : SY/019/07 V2		Page Number : 11 c Issue Date : 10 N		(ALS) S Environmeni				
Natrix Type: SOIL			Method Blank (MB) and Laboratory Control Samples (LCS) Rep							
	Г	Method	Actual	Results	Recov	ery Limits				
		blank result	Spike concentration	Spike Recovery	Dynamic Recovery Limits					
Analyte name	LOR			LCS	Low	High				
EP130A: Organophosphorus Pesticides (Ultra-trace) - continued										
EP130A: Organophosphorus Pesticides (Ultra-trace) - (QC Lot: 381238)	- continued	µg/kg	µg/kg	%	%	%				
Monocrotophos	10 µg/kg		50	74.9	19.7	176				
	10 µg/kg	<10								
Parathion	10 µg/kg	<10								
	10 µg/kg		50	116	39.2	145				
Parathion-methyl	10 µg/kg		50	135	23.5	152				
	10 µg/kg	<10								
Pirimphos-ethyl	10 µg/kg	<10								
	10 µg/kg		50	106	47.1	141				
Prothiofos	10 µg/kg		50	102	36.1	148				
	10 µg/kg	<10								
EP131A: Organochlorine Pesticides			•							
EP131A: Organochlorine Pesticides - (QC Lot: 381239)		µg/kg	µg/kg	%	%	%				
4,4'-DDD	0.5 µg/kg		5	80.8	42.5	141				
	0.50 µg/kg	<0.50								
4,4'-DDE	0.5 µg/kg		5	70.3	34.8	140				
.4'-DDE	0.50 µg/kg	<0.50								
4,4'-DDT	0.50 µg/kg	<0.50								
	0.5 µg/kg		5	75.6	38	143				
Aldrin	0.5 µg/kg		5	72.6	31.7	140				
,4'-DDT Idrin	0.50 μg/kg	<0.50								
alpha-BHC	0.5 µg/kg		5	69.0	24.5	150				
	0.50 µg/kg	<0.50								
alpha-Endosulfan	0.5 µg/kg		5	74.3	23.7	139				
	0.50 µg/kg	<0.50								
beta-BHC	0.5 µg/kg		5	97.0	36.9	139				
	0.50 µg/kg	<0.50								
beta-Endosulfan	0.50 µg/kg	<0.50								
	0.5 µg/kg		5	68.9	35.8	138				
cis-Chlordane	0.50 µg/kg	<0.50								
	0.5 µg/kg		5	74.4	22.3	145				

Ilient : URS AUSTRALIA (NSW) PTY LTD roject : 42317595 Sediment Study	Work Order ALS Quote Reference	: ES0703904 : SY/019/07 V2		Page Number : 12 c Issue Date : 10 N		(ALS) S Environmeni				
latrix Type: SOIL	_			Method Blank (MB) and Laboratory Control Samples (LCS) Report						
		Method blank	Actual	Results	Recovery Limits					
		result	Spike concentration	Spike Recovery	Dynamic Recovery Limits					
Analyte name	LOR			LCS	Low	High				
EP131A: Organochlorine Pesticides - continued				-						
EP131A: Organochlorine Pesticides - (QC Lot: 381239) - continued		µg/kg	µg/kg	%	%	%				
DDT (total)	0.50 µg/kg	<0.50								
delta-BHC	0.50 µg/kg	<0.50								
	0.5 µg/kg		5	69.9	38.2	137				
Dieldrin	0.5 µg/kg		5	90.3	43.2	134				
	0.50 µg/kg	<0.50								
Endosulfan (sum)	0.50 µg/kg	<0.50								
Endosulfan sulfate Endrin	0.50 µg/kg	<0.50								
	0.5 µg/kg		5	76.5	7.45	158				
Endrin Endrin aldehyde	0.50 µg/kg	<0.50								
	0.5 µg/kg		5	78.1	21.6	162				
Endrin aldehyde Endrin ketone	0.50 µg/kg	<0.50								
	0.5 µg/kg		5	73.8	19.3	131				
	0.50 µg/kg	<0.50								
	0.5 µg/kg		5	87.6	17.9	141				
gamma-BHC	0.50 µg/kg	<0.50								
	0.5 µg/kg		5	80.6	30.7	145				
Heptachlor	0.50 µg/kg	<0.50								
	0.5 µg/kg		5	83.7	31	153				
Heptachlor epoxide	0.5 µg/kg		5	81.8	34.3	138				
	0.50 µg/kg	<0.50								
Hexachlorobenzene (HCB)	0.5 µg/kg		5	63.6	18.6	146				
	0.50 µg/kg	<0.50								
Methoxychlor	0.50 µg/kg	<0.50								
	0.5 µg/kg		5	71.8	15	157				
Total Chlordane (sum)	0.50 µg/kg	<0.50								
trans-Chlordane	0.50 µg/kg	<0.50								
	0.5 µg/kg		5	63.8	42.4	139				
P131B: Polychlorinated Biphenyls (as Aroclors)										
EP131B: Polychlorinated Biphenyls (as Aroclors) - (QC Lot: 381240)		µg/kg	µg/kg	%	%	%				
Aroclor 1016	5.0 µg/kg	<5.0								

Client : URS AUSTRALIA (NSW) PTY LTD Project : 42317595 Sediment Study	Work Order ALS Quote Reference	: ES0703904 : SY/019/07 V2		Page Number : 13 0 Issue Date : 10 N		ALS)				
Matrix Type: SOIL	_		Method Blank (MB) and Laboratory Control Samples (LCS) Repor							
		Method blank	Actual	Results	Recovery Limits					
		result	Spike concentration	Spike Recovery	Dynamic Recovery Limits					
Analyte name	LOR			LCS	Low	High				
EP131B: Polychlorinated Biphenyls (as Aroclors) - continued			•							
EP131B: Polychlorinated Biphenyls (as Aroclors) - (QC Lot: 381240) - continued		µg/kg	µg/kg	%	%	%				
Aroclor 1221	5.0 µg/kg	<5.0								
Aroclor 1232	5.0 µg/kg	<5.0								
Aroclor 1242	5.0 µg/kg	<5.0								
Aroclor 1248	5.0 µg/kg	<5.0								
Aroclor 1254	5.0 µg/kg	<5.0								
	5 µg/kg		50	95.4	61.3	121				
Aroclor 1260	5.0 µg/kg	<5.0								
Total Polychlorinated biphenyls	5.0 µg/kg	<5.0								
EP132B: Polynuclear Aromatic Hydrocarbons										
EP132B: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381234)		µg/kg	µg/kg	%	%	%				
2-Methylnaphthalene	10 µg/kg	<10								
	10 µg/kg		100	86.2	66.6	122				
3-Methylcholanthrene	10 µg/kg		100	79.6	34.8	123				
	10 µg/kg	<10								
7,12-Dimethylbenz(a)anthracene	10 µg/kg	<10								
	10 µg/kg		100	71.0	6.88	147				
Acenaphthene	10 µg/kg		100	92.4	62.9	124				
	10 µg/kg	<10								
Acenaphthylene	10 µg/kg	<10								
	10 µg/kg		100	89.8	58.2	117				
Anthracene	10 µg/kg		100	88.2	61.4	117				
	10 µg/kg	<10								
Benz(a)anthracene	10 µg/kg		100	87.5	65.7	125				
	10 µg/kg	<10								
Benzo(a)pyrene	10 µg/kg		100	86.2	60.7	119				
	10 µg/kg	<10								
Benzo(b)fluoranthene	10 µg/kg		100	91.2	68.6	126				
	10 µg/kg	<10								
Benzo(e)pyrene	10 µg/kg	<10								
	10 µg/kg		100	88.4	70	129				

	ALS
15	Environmental

Client : URS AUSTRALIA (NSW) PTY LTD Project : 42317595 Sediment Study	Work Order ALS Quote Reference	: ES0703904 : SY/019/07 V2		Page Number : 14 c Issue Date : 10 N		(ALS) S Environmenta	
Matrix Type: SOIL					(MB) and Laboratory Con		
	[Method	Actual	Results	Recove	ery Limits	
		blank result	Spike concentration	Spike Recovery	Dynamic Recovery Limits		
Analyte name	LOR			LCS	Low	High	
EP132B: Polynuclear Aromatic Hydrocarbons - continued			_		-	-	
EP132B: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381234) - continued		µg/kg	µg/kg	%	%	%	
Benzo(g,h,i)perylene	10 µg/kg		100	93.3	52.4	135	
	10 µg/kg	<10					
Benzo(k)fluoranthene	10 µg/kg		100	98.1	70.4	126	
	10 µg/kg	<10					
Chrysene	10 µg/kg	<10					
	10 µg/kg		100	88.0	67.5	126	
Coronene Dibenz(a,h)anthracene	10 µg/kg	<10					
	10 µg/kg		100	100	34.7	141	
Dibenz(a,h)anthracene	10 µg/kg	<10					
	10 µg/kg		100	94.1	61.7	129	
Fluoranthene	10 µg/kg		100	96.2	68.7	126	
	10 µg/kg	<10					
Fluorene	10 µg/kg		100	93.8	66.7	123	
	10 µg/kg	<10					
Indeno(1,2,3,cd)pyrene	10 µg/kg	<10					
	10 µg/kg		100	93.4	56.6	131	
N-2-Fluorenyl Acetamide	100 µg/kg		100	94.4	50	138	
	100 µg/kg	<100					
Naphthalene	10 µg/kg		100	91.1	63.2	120	
	10 µg/kg	<10					
Perylene	10 µg/kg	<10					
	10 µg/kg		100	84.8	58.6	119	
Phenanthrene	10 µg/kg	<10					
	10 µg/kg		100	95.5	65.4	124	
Pyrene	10 µg/kg		100	98.4	67.9	127	
	10 µg/kg	<10					

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703904	Page Number	:	15 of 18	(ALS)
Project	:	42317595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	:	10 May 2007	ALS Environmental

Quality Control Report - Matrix Spikes (MS)

The quality control term **Matrix Spike (MS)** refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQO's). 'Ideal' recovery ranges stated may be waived in the event of sample matrix interferences. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations: LOR* = *Limit of Reporting, RPD* = *Relative Percent Difference.*

Matrix Type: SOIL

latrix Type: SOIL		inatrix Spike (ins) Rep						
					Actual	Results	Recove	ery Limits
					Sample Result	Spike Recovery		Limits
Analyte name	Laboratory Sample ID	Client Sample ID	LOR	Spike Concentration		MS	Low	High
P080/071: Total Petroleum	Hydrocarbons					-		
EP080/071: Total Petroleur	m Hydrocarbons - (QC Lot: 38	1125)		mg/kg	mg/kg	%	%	%
C6 - C9 Fraction	ES0703904-001	H7	10 mg/kg	26	<10	88.1	70	130
EP080/071: Total Petroleur	n Hydrocarbons - (QC Lot: 38	1390)		mg/kg	mg/kg	%	%	%
C10 - C14 Fraction	ES0703904-001	H7	50 mg/kg	490	<110	91.0	70	130
C15 - C28 Fraction			100 mg/kg	3380	<220	100	70	130
C29 - C36 Fraction			100 mg/kg	2260	<220	104	70	130
EP080: BTEX								
EP080: BTEX - (QC Lot: 38	31125)			mg/kg	mg/kg	%	%	%
Benzene	ES0703904-001	H7	0.1 mg/kg	2.5	<0.2	95.9	70	130
Toluene			0.1 mg/kg	2.5	<0.2	84.2	70	130
Ethylbenzene			0.1 mg/kg	2.5	<0.2	97.6	70	130
meta- & para-Xylene			0.1 mg/kg	2.5	<0.2	112	70	130
ortho-Xylene			0.1 mg/kg	2.5	<0.2	111	70	130
EP130A: Organophosphoru	s Pesticides (Ultra-trace)							
EP130A: Organophosphor	us Pesticides (Ultra-trace) - (QC Lot: 381238)		µg/kg	µg/kg	%	%	%
Bromophos-ethyl	ES0703904-001	H7	10 µg/kg	50	<10	26.8	70	130
Carbophenothion			10 µg/kg	50	<10	21.7	70	130
Chlorfenvinphos (E)			10 µg/kg	5	<10.0	* Not Determined	70	130
Chlorfenvinphos (Z)			10 µg/kg	45	<10	* Not Determined	70	130
Chlorpyrifos			10 µg/kg	50	<10	23.6	70	130
Chlorpyrifos-methyl			10 µg/kg	50	<10	28.7	70	130
Demeton-S-methyl			10 µg/kg	50	<10	35.4	70	130
Diazinon			10 µg/kg	50	<10	38.6	70	130
Dichlorvos			10 µg/kg	50	<10	43.8	70	130
Dimethoate			10 µg/kg	50	<10	27.1	70	130

A Campbell Brothers Limited Company

Matrix Spike (MS) Report

	ALS
ALS.	Environmental

Matrix Spike (MS) Report

Client : l	JRS AUSTRALIA (NSW) PTY LTD	Work Order :	ES0703904	Page Number	:	16 of 18		•
Project : 4	2317595 Sediment Study	ALS Quote Reference :	SY/019/07 V2	Issue Date	:	10 May 2007	ALS En	u li

Matrix Type: SOIL

					Actual Results		Recovery Limits			
	1				Sample Result	Spike Recovery		Limits		
Analyte name	Laboratory Sample ID	Client Sample ID	LOR	Spike Concentration		MS	Low	High		
P130A: Organophosphor	us Pesticides (Ultra-trace) - co	ntinued								
EP130A: Organophospho	orus Pesticides (Ultra-trace) - (G	C Lot: 381238) - continued		µg/kg	µg/kg	%	%	%		
Ethion	ES0703904-001	H7	10 µg/kg	50	<10	24.3	70	130		
Fenamiphos			10 µg/kg	50	<10	* Not Determined	70	130		
Fenthion			10 µg/kg	50	<10	21.8	70	130		
Malathion			10 µg/kg	50	<10	25.8	70	130		
Methyl Azinphos			10 µg/kg	50	<10	22.4	70	130		
Monocrotophos			10 µg/kg	50	<10	* Not Determined	70	130		
Parathion			10 µg/kg	50	<10	27.6	70	130		
Parathion-methyl			10 µg/kg	50	<10	37.5	70	130		
Pirimphos-ethyl			10 µg/kg	50	<10	21.0	70	130		
Prothiofos			10 µg/kg	50	<10	27.9	70	130		
P131A: Organochlorine P	Pesticides									
EP131A: Organochlorine	Pesticides - (QC Lot: 381239)			µg/kg	µg/kg	%	%	%		
Aldrin	ES0703904-001	H7	0.5 µg/kg	5	<0.50	16.0	70	130		
alpha-BHC			0.5 µg/kg	5	<0.50	34.5	70	130		
beta-BHC			0.5 µg/kg	5	<0.50	33.8	70	130		
delta-BHC			0.5 µg/kg	5	<0.50	37.1	70	130		
4,4'-DDD			0.5 µg/kg	5	<0.50	63.4	70	130		
4,4'-DDE			0.5 µg/kg	5	<0.50	52.9	70	130		
4,4'-DDT			0.5 µg/kg	5	<0.50	74.6	70	130		
Dieldrin			0.5 µg/kg	5	<0.50	31.1	70	130		
alpha-Endosulfan			0.5 µg/kg	5	<0.50	48.7	70	130		
beta-Endosulfan			0.5 µg/kg	5	<0.50	52.3	70	130		
Endosulfan sulfate			0.5 µg/kg	5	<0.50	112	70	130		
Endrin			0.5 µg/kg	5	<0.50	55.4	70	130		
Endrin aldehyde			0.5 µg/kg	5	<0.50	21.3	70	130		
Endrin ketone			0.5 µg/kg	5	<0.50	36.2	70	130		
Heptachlor			0.5 µg/kg	5	<0.50	18.7	70	130		
Heptachlor epoxide			0.5 µg/kg	5	<0.50	31.4	70	130		
Hexachlorobenzene (HCE	В)		0.5 µg/kg	5	<0.50	32.2	70	130		
gamma-BHC			0.5 µg/kg	5	<0.50	37.6	70	130		

ALS
(ALS)
ALS Environmental

: 17 of 18

: 10 May 2007

Page Number

Issue Date

Matrix Spike (MS) Report Matrix Type: SOIL Actual Results Recovery Limits Sample Result Spike Recovery Static Limits Analyte name Laboratory Sample ID Client Sample ID LOR Spike Concentration MS Low High EP131A: Organochlorine Pesticides - continued % % % EP131A: Organochlorine Pesticides - (QC Lot: 381239) - continued µg/kg µg/kg ES0703904-001 H7 Methoxychlor 0.5 µg/kg 5 <0.50 19.0 70 130 cis-Chlordane 0.5 µg/kg 5 < 0.50 25.8 70 130 trans-Chlordane 5 <0.50 32.9 0.5 µg/kg 70 130 EP131B: Polychlorinated Biphenyls (as Aroclors) ua/ka ua/ka ED121 P. Dolyahlaringtod Pinhanyla (as Argolars) (OC Late 201240) 0/_ ~ 0/_

:

Work Order

ALS Quote Reference

: ES0703904

SY/019/07 V2

URS AUSTRALIA (NSW) PTY LTD

42317595 Sediment Study

Client

Project

:

:

EP131B: Polychlorinated Biphe	enyls (as Aroclors) - (QC	: Lot: 381240)		µg/kg	µg/kg	%	%	%
Aroclor 1254	ES0703904-001	H7	5 µg/kg	50	<5.0	36.0	70	130
EP132B: Polynuclear Aromatic I	lydrocarbons							
EP132B: Polynuclear Aromatic	Hydrocarbons - (QC Lo	t: 381234)	µg/kg	µg/kg	%	%	%	
3-Methylcholanthrene	ES0703904-001	H7	10 µg/kg	100	<10	76.1	21	129
2-Methylnaphthalene			10 µg/kg	100	70	61.6	40	130
7,12-Dimethylbenz(a)anthrac ene			10 µg/kg	100	<10	79.3	8	158
Acenaphthene			10 µg/kg	100	<10	78.3	38	127
Acenaphthylene			10 µg/kg	100	<10	77.1	35	122
Anthracene			10 µg/kg	100	10	83.4	44	124
Benz(a)anthracene			10 µg/kg	100	50	66.9	48	124
Benzo(a)pyrene			10 µg/kg	100	70	71.6	44	123
Benzo(b)fluoranthene			10 µg/kg	100	60	71.5	43	129
Benzo(e)pyrene			10 μg/kg	100	50	68.6	46	130
Benzo(g,h,i)perylene			10 µg/kg	100	60	74.2	43	129
Benzo(k)fluoranthene			10 µg/kg	100	60	71.4	54	123
Chrysene			10 µg/kg	100	60	68.5	55	122
Coronene			10 µg/kg	100	10	81.3	33	134
Dibenz(a,h)anthracene			10 µg/kg	100	10	78.1	46	129
Fluoranthene			10 µg/kg	100	90	73.0	52	125
Fluorene			10 µg/kg	100	10	77.4	45	121
Indeno(1,2,3,cd)pyrene			10 µg/kg	100	50	74.8	41	132
N-2-Fluorenyl Acetamide			100 µg/kg	100	<100	106	28	152
Naphthalene			10 µg/kg	100	70	65.5	34	130
Perylene			10 µg/kg	100	30	70.9	38	124

(ALS)
LS Environmental

129

72.4

51

100

Client : Project :	URS AUSTRALIA (NSW) PTY LTD 42317595 Sediment Study		rder iote Reference	: ES0703904 : SY/019/07 V2		Page Numbe Issue Date	er : 18 of 18 : 10 May 2007		(ALS) Environmental
Matrix Type: SO	Aatrix Type: SOIL								trix Spike (MS) Report
Actual Results					Results	Recovery Limits			
						Sample Result	Spike Recovery	Statio	: Limits
Analyte name	Laboratory Sample ID	Client Sample ID		LOR	Spike Concentration		MS	Low	High
EP132B: Polynuclear Aromatic Hydrocarbons - continued									
EP132B: Polyr	nuclear Aromatic Hydrocarbons - (QC Lot	: 381234) - continued			µg/kg	µg/kg	%	%	%
Phenanthrene	e ES0703904-001	H7		10 µg/kg	100	50	80.5	45	124

10 µg/kg

100

Pyrene

ALS Environmental

INTERPRETIVE QUALITY CONTROL REPORT

Client	:	URS AUSTRALIA (NSW) PTY LTD	Laboratory	:	Environmental Division Sydney	Page	:	1 of 9
Contact	:	CARSTEN MATTHAI	Contact	:	Victor Kedicioglu			
Address	:	LEVEL 3, 116 MILLER STREET NORTH SYDNEY NSW AUSTRALIA 2060	Address	:	277-289 Woodpark Road Smithfield NSW Australia 2164	Work order	:	ES0703904
						Amendment No.	:	3
Project	:	42317595 Sediment Study	Quote number	:	SY/019/07 V2	Date received	:	27 Mar 2007
Order number	:	- Not provided -				Date issued	:	10 May 2007
C-O-C number	:	- Not provided -						
Site	:	- Not provided -						
E-mail	:	carsten_matthai@urscorp.com	E-mail	:	Victor.Kedicioglu@alsenviro.com	No. of samples		
Telephone	:	89255500	Telephone	:	61-2-8784 8555	Received	:	18
Facsimile	:	89255555	Facsimile	:	61-2-8784 8500	Analysed	:	18

This Interpretive Quality Control Report was issued on 10 May 2007 for the ALS work order reference ES0703904 and supersedes any previous reports with this reference. This report contains the following information:

1 Analysis Holding Time Compliance

1 Quality Control Type Frequency Compliance

1 Summary of all Quality Control Outliers

1 Brief Method Summaries

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703904	Page Number	:	2 of 9	(ALS)
Project	:	42317595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	:	10 May 2007	ALS Environmenta

Interpretive Quality Control Report - Analysis Holding Time

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the sample aliquot was taken. Elapsed time to analysis represents time from sampling where no extraction / digestion is involved or time from extraction / digestion where this is present. For composite samples, sampling date/time is taken as that of the oldest sample contributing to that composite. Sample date/time for laboratory produced leaches are taken from the completion date/time of the leaching process. Outliers for holding time are based on USEPA SW846, APHA, AS and NEPM (1999). Failed outliers, refer to the 'Summary of Outliers'.

Matrix Type: SOIL

Method Date Sampled Extraction / Preparation Analysis Date extracted Due for extraction Pass? Date analysed Due for analysis Pass? Container / Client Sample ID(s) EA055-103: Moisture Content Soil Glass Jar - Unpreserved H8. 2 Apr 2007 H7, 26 Mar 2007 28 Mar 2007 Pass ------------H9. H10. H17. H18. H21. H22. H23 H24. H25 H26. H28. H31. H37. H38. QC3, QC4 EP071: TPH - Semivolatile Fraction Soil Glass Jar - Unpreserved H7. H8. 26 Mar 2007 28 Mar 2007 9 Apr 2007 Pass 2 Apr 2007 7 May 2007 Pass H10. H9, H17, H18, H21. H22. H23. H24. H25. H26, H28. H31. H37, H38. QC3. QC4 EP080: TPH Volatiles/BTEX Soil Glass Jar - Unpreserved H7, H8, 9 Apr 2007 9 Apr 2007 Pass 26 Mar 2007 28 Mar 2007 Pass 31 Mar 2007 H9. H10. H17, H18, H21, H22, H23. H24. H25, H26, H28, H31, H37. H38. QC3, QC4 EP130: Organophosphorus Pesticides (Ultra-trace)

Analysis Holding Time and Preservation

LS Environmental

Client : URS AUSTRALIA (N	ISW) PTY LTD	Work Order	: ES0703904		Page N	umber : 3 d	of 9		LS)
roject : 42317595 Sediment	Study	ALS Quote Reference	SY/019/07 V2		Issue Da	ate : 10) May 2007		Iranmani
latrix Type: SOIL							Anal	ysis Holding Time	
Method		Date Sampled	E	xtraction / Preparatio	'n		Analysis		
Container / Client Sample ID(s)				Date extracted	Due for extraction	Pass?	Date analysed	Due for analysis	Pass?
EP130: Organophosphorus Pesticides (Ultra-trace) - continued								
Soil Glass Jar - Unpreserved									
H7,	H8,		26 Mar 2007	28 Mar 2007	9 Apr 2007	Pass	30 Mar 2007	7 May 2007	Pass
H9,	H10,								
H17,	H18,								
H21,	H22,								
H23,	H24,								
H25,	H26,								
H28,	H31,								
H37,	H38,								
QC3,	QC4								
EP131A: Organochlorine Pesticides (Ul	tra-trace)								
Soil Glass Jar - Unpreserved									
H7,	H8,		26 Mar 2007	28 Mar 2007	9 Apr 2007	Pass	30 Mar 2007	7 May 2007	Pass
H9,	H10,								
H17,	H18,								
H21,	H22,								
H23,	H24,								
H25,	H26,								
H28,	H31,								
H37,	H38,								
QC3,	QC4								
EP131B: PCB's (Ultra-trace)			•				•	1	
Soil Glass Jar - Unpreserved									
н7,	H8,		26 Mar 2007	28 Mar 2007	9 Apr 2007	Pass	30 Mar 2007	7 May 2007	Pass
Н9,	H10,							-	
H17,	H18,								
H21,	H22,								
H23,	H24,								
H25,	H26,								
H28,	H31,								
H37,	H38,								
QC3,	QC4								
EP132: Semivolatile Compounds by GC	CMS(SIM - Ultra-trace)								
Soil Glass Jar - Unpreserved	·								
Н7,	Н8,		26 Mar 2007	28 Mar 2007	9 Apr 2007	Pass	30 Mar 2007	7 May 2007	Pass
H9,	H10,								
H17,	H18,								
H21,	H22,								
H23,	H24,								
H25,	H26,								
H28,	H31,								
H37,	H38,								
QC3,	QC4								

Interpretive Quality Control Report - Frequency of Quality Control Samples

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which this work order was processed. Actual rate should be greater than or equal to the expected rate.

uality Control Sample Type	Count		Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual Expected		
aboratory Duplicates (DUP)					•
EA055-103: Moisture Content	2	20	10.0	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP071: TPH - Semivolatile Fraction	2	19	10.5	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP080: TPH Volatiles/BTEX	2	20	10.0	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP130: Organophosphorus Pesticides (Ultra-trace)	2	18	11.1	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131A: Organochlorine Pesticides (Ultra-trace)	2	18	11.1	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131B: PCB's (Ultra-trace)	2	18	11.1	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP132: Semivolatile Compounds by GCMS(SIM - Ultra-trace)	2	18	11.1	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
aboratory Control Samples (LCS)					
EP071: TPH - Semivolatile Fraction	1	19	5.3	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP080: TPH Volatiles/BTEX	1	20	5.0	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP130: Organophosphorus Pesticides (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131A: Organochlorine Pesticides (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131B: PCB's (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP132: Semivolatile Compounds by GCMS(SIM - Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
lethod Blanks (MB)					
EP071: TPH - Semivolatile Fraction	1	19	5.3	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP080: TPH Volatiles/BTEX	1	20	5.0	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP130: Organophosphorus Pesticides (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131A: Organochlorine Pesticides (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131B: PCB's (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP132: Semivolatile Compounds by GCMS(SIM - Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
latrix Spikes (MS)					
EP071: TPH - Semivolatile Fraction	1	19	5.3	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP080: TPH Volatiles/BTEX	1	20	5.0	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP130: Organophosphorus Pesticides (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131A: Organochlorine Pesticides (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131B: PCB's (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP132: Semivolatile Compounds by GCMS(SIM - Ultra-trace)		18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703904	Page Number	r	: 5 of 9	(ALS)
Project	:	42317595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date		: 10 May 2007	ALS Environmental

Interpretive Quality Control Report - Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged on the 'Quality Control Report'. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). Flagged outliers on control limits for inorganics tests may be within the NEPM specified data quality objective of recoveries in the range of 70 to 130%. Where this occurs, no corrective action is taken. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot.

Non-surrogates

ALS QC Lot	Matrix Type	Laboratory Sample ID	Client Sample ID	Analyte	Data	Limits	Comment
Matrix Spikes (MS)							
EP130A: Organophosphorus Pesticides (Ultra-trace)	SOIL	ES0703904-001	H7	Bromophos-ethyl	26.8 %	70-130 %	Recovery less than lower data quality objective
				Carbophenothion	21.7 %	70-130 %	Recovery less than lower data quality objective
				Chlorfenvinphos (E)	ND		Matrix spike recovery not determined due to sample matrix interference.
				Chlorfenvinphos (Z)	ND		Matrix spike recovery not determined due to sample matrix interference.
				Chlorpyrifos	23.6 %	70-130 %	Recovery less than lower data quality objective
				Chlorpyrifos-methyl	28.7 %	70-130 %	Recovery less than lower data quality objective
				Demeton-S-methyl	35.4 %	70-130 %	Recovery less than lower data quality objective
				Diazinon	38.6 %	70-130 %	Recovery less than lower data quality objective
				Dichlorvos	43.8 %	70-130 %	Recovery less than lower data quality objective
				Dimethoate	27.1 %	70-130 %	Recovery less than lower data quality objective
				Ethion	24.3 %	70-130 %	Recovery less than lower data quality objective
				Fenamiphos	ND		Matrix spike recovery not determined due to sample matrix interference.
				Fenthion	21.8 %	70-130 %	Recovery less than lower data quality objective
				Malathion	25.8 %	70-130 %	Recovery less than lower data quality objective
				Methyl Azinphos	22.4 %	70-130 %	Recovery less than lower data quality objective
				Monocrotophos	ND		Matrix spike recovery not determined due to sample matrix interference.
				Parathion	27.6 %	70-130 %	Recovery less than lower data quality objective
				Parathion-methyl	37.5 %	70-130 %	Recovery less than lower data quality objective
				Pirimphos-ethyl	21.0 %	70-130 %	Recovery less than lower data quality objective
				Prothiofos	27.9 %	70-130 %	Recovery less than lower data quality objective

Client : URS AUSTRALIA (NSW) PTY LTD Project : 42317595 Sediment Study				S0703904 Y/019/07 V2	Page N Issue D		6 of 9 10 May 2007	
EP131A: Organochlorine Pesticides	SOIL	ES0703904-001	H7	Aldrin	16.0 %	70-130 %		ver data quality objective
				alpha-BHC	34.5 %	70-130 %		er data quality objective
				beta-BHC	33.8 %	70-130 %		ver data quality objective
				delta-BHC	37.1 %	70-130 %	· · ·	ver data quality objective
				4,4'-DDD	63.4 %	70-130 %		er data quality objective
				4,4'-DDE	52.9 %	70-130 %		er data quality objective
				Dieldrin	31.1 %	70-130 %	Recovery less than low	er data quality objective
				alpha-Endosulfan	48.7 %	70-130 %	Recovery less than low	er data quality objective
				beta-Endosulfan	52.3 %	70-130 %	Recovery less than low	er data quality objective
				Endrin	55.4 %	70-130 %	Recovery less than low	er data quality objective
				Endrin aldehyde	21.3 %	70-130 %	Recovery less than low	er data quality objective
				Endrin ketone	36.2 %	70-130 %	Recovery less than low	er data quality objective
				Heptachlor	18.7 %	70-130 %	Recovery less than low	er data quality objective
				Heptachlor epoxide	31.4 %	70-130 %	Recovery less than low	er data quality objective
				Hexachlorobenzene (HCB)	32.2 %	70-130 %	Recovery less than low	er data quality objective
				gamma-BHC	37.6 %	70-130 %	Recovery less than low	er data quality objective
				Methoxychlor	19.0 %	70-130 %	Recovery less than low	er data quality objective
				cis-Chlordane	25.8 %	70-130 %	Recovery less than low	er data quality objective
				trans-Chlordane	32.9 %	70-130 %	Recovery less than low	er data quality objective
EP131B: Polychlorinated Biphenyls (as Aroclors)	SOIL	ES0703904-001	H7	Aroclor 1254	36.0 %	70-130 %	Recovery less than low	er data quality objective

l For all matrices, no RPD recovery outliers occur for the duplicate analysis.

l For all matrices, no method blank result outliers occur.

l For all matrices, no laboratory spike recoveries breaches occur.

l	ALS	
	nuiranmen	
		<u> </u>

: 7 of 9

Page Number

42317595 Sediment Study ALS Quote Reference SY/019/07 V2 Issue Date : 10 May 2007 Project . : Surrogates ALS QC Lot Matrix Type Laboratory Sample ID Client Sample ID Analyte Data Limits Comment Surrogates EP080S: TPH(V)/BTEX Surrogates ES0703904-002 SOIL H8 Toluene-D8 80.0 % 81-117 % Recovery less than lower data quality objective SOIL ES0703904-004 80.0 % 81-117 % H10 Toluene-D8 Recovery less than lower data quality objective SOIL ES0703904-007 H21 Toluene-D8 80.8 % 81-117 % Recovery less than lower data quality objective SOIL ES0703904-010 H24 117 % 81-117 % Toluene-D8 Recovery greater than upper data guality objective SOIL ES0703904-012 H26 Toluene-D8 79.9 % 81-117 % Recovery less than lower data quality objective 1,2-Dichloroethane-D4 120 % 80-120 % Recovery greater than upper data quality objective SOIL ES0703904-015 H37 Toluene-D8 79.6 % 81-117 % Recovery less than lower data quality objective EP130S: Organophosphorus Pesticide Surrogate SOIL H7 DEF ES0703904-001 21.8 % 51.3-136.9 % Recovery less than lower data quality objective SOIL H8 DEF 32.4 % ES0703904-002 51.3-136.9 % Recovery less than lower data quality objective SOIL DEF ES0703904-003 H9 30.0 % 51.3-136.9 % Recovery less than lower data quality objective DEF SOIL ES0703904-004 H10 ND ____ Surrogate recovery not determined due to (target or non-target) matrix interferences SOIL ES0703904-005 H17 DFF 34.9 % 51.3-136.9 % Recovery less than lower data quality objective SOIL ES0703904-006 H18 DEF 32.2 % 51.3-136.9 % Recovery less than lower data quality objective SOIL ES0703904-007 H21 DEF ND ____ Surrogate recovery not determined due to (target or non-target) matrix interferences SOIL ES0703904-008 H22 DEF 294% 51.3-136.9 % Recovery less than lower data quality objective SOIL ES0703904-009 DEF ND Surrogate recovery not determined due to (target or H23 ---non-target) matrix interferences SOIL ES0703904-010 DEF H24 28.3 % 51.3-136.9 % Recovery less than lower data quality objective SOIL ES0703904-011 H25 DEF 41.4 % 51.3-136.9 % Recovery less than lower data quality objective SOIL ES0703904-012 H26 DFF 22.6 % 51.3-136.9 % Recovery less than lower data quality objective SOIL ES0703904-013 H28 DEF ND Surrogate recovery not determined due to (target or ---non-target) matrix interferences SOIL ES0703904-014 H31 DEF 27.3 % 51.3-136.9 % Recovery less than lower data quality objective ES0703904-015 DEF SOIL H37 45.9 % 51.3-136.9 % Recovery less than lower data quality objective SOIL ES0703904-016 H38 DEF 26.5 % 51.3-136.9 % Recovery less than lower data quality objective SOIL ES0703904-017 QC3 DEF 37.7 % 51.3-136.9 % Recovery less than lower data quality objective SOIL ES0703904-018 QC4 DEF 38.2 % 51.3-136.9 % Recovery less than lower data quality objective EP131S: OC Pesticide Surrogate SOIL ES0703904-009 H23 Dibromo-DDF ND Surrogate recovery not determined due to (target or ---non-target) matrix interferences Surrogate recovery not determined due to (target or EP131T: PCB Surrogate SOIL ES0703904-009 H23 Decachlorobiphenyl ND ---non-target) matrix interferences

: ES0703904

Work Order

Outliers : Analysis Holding Time

The following report highlights outliers within this 'Interpretive Quality Control Report - Analysis Holding Time'.

1 No holding time outliers occur.

URS AUSTRALIA (NSW) PTY LTD

Client

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703904	Page Number	: 8 of 9	(ALS)
Project	:	42317595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	: 10 May 2007	ALS Environmental

Outliers : Frequency of Quality Control Samples

The following report highlights outliers within this 'Interpretive Quality Control Report - Frequency of Quality Control Samples'.

l No frequency outliers occur.

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703904	Page Number	: 9 of 9	(ALS)
Project	:	42317595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	: 10 May 2007	ALS Environmen

Method Reference Summary

The analytical procedures used by ALS Environmental are based on established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house procedure are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

Matrix Type: SEDIMENT

Method Reference Summary

Preparation Methods

ORG16 : Methanolic Extraction of Soils for Purge and Trap - (USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.

ORG17A-AC : Tumbler Extraction of Solids/ Acetylation - In-house, Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to 1 mL with exchange into cyclohexane. Phenolic compounds are reacted with acetic anhydride to yield phenyl acetates suitable for ultra-trace analysis.

ORG17A-UTP : Tumbler Extraction of Solids/ Sample Cleanup - In-house, Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. Samples are extracted, concentrated (by KD) and exchanged into an appropriate solvent for GPC and florisil cleanup as required.

ORG17B : Tumbler Extraction of Solids (Option B - Non-concentrating) - In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Analytical Methods

EA055-103 : Moisture Content - A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (1999) Schedule B(3) (Method 102)

EP071 : TPH - Semivolatile Fraction - (USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (1999) Schedule B(3) (Method 506.1)

EP080 : TPH Volatiles/BTEX - (USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 501)

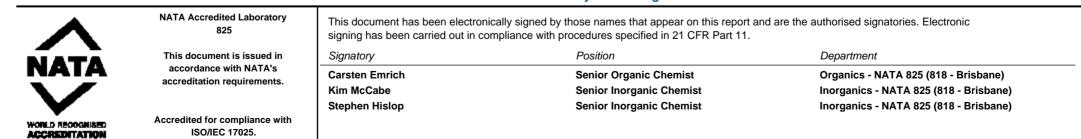
EP130 : Organophosphorus Pesticides (Ultra-trace) - USEPA Method 3640 (GPC cleanup), 8141 (GC/FPD - Capillary Column) This technique is compliant with NEPM (1999) Schedule B(3) (Method 505)

EP131A : Organochlorine Pesticides (Ultra-trace) - USEPA Method 3640 (GPC cleanup), 3620 (Florisil), 8081/8082 (GC/uECD/uECD) This technique is compliant with NEPM (1999) Schedule B(3) (Method 504)

EP131B : PCB's (Ultra-trace) - USEPA Method 3640 (GPC cleanup),3620 (Florisil), 8081/8082 (GC/uECD/uECD) This technique is compliant with NEPM (1999) Schedule B(3) (Method 504)

EP132 : Semivolatile Compounds by GCMS(SIM - Ultra-trace) - 8270 GCMS Capiliary column, SIM mode.

				CHAIN	OF CUSTODY FORM				¥.,									
THIS COLUMN FOR LAB USE ONI	Y FROM										l of Contai		o Tuno	, Preserv		è.7	<u> </u>	
	URS (AUS			DATE: 27	1-3-07	TO: ALS Smithfield					ooma	and	i Analys	, rreserv Sis	ative			
Job Code:	ACN 000 6					277 Woodpark Rd				<u>с</u>		Containe	er Identi	fication				
	North Sydr Level 3 116		root			Smithfield 2164	Size n	nL 250	150			-		-			+	
43217595		Jumer Su	eel				Type Preser		Glass								++	
	Ph: 8925 5	500		Fax: 8925 5555			tive											
Due Date:	Project No:			Sampler(s): Carste			Code											
12-4-07	43217595 Project Manage Carsten Ma Agreement No	ger: Itthai	9-07 URS V2	Signature(s): Checked:	Matthe			SY-019-07 URS V2 \$\BTEX - Low Level, alytes Ultra Trace, Ultra Trace (Table A)	(TBT)									
Sample cold?	? Released f Carsten Ma Date:	or URS by tthai	r: Time:		Received for Laborator E FENTOVO - Date: 7/03/07	ALS Sydney Time:	Analytes	tes per SY-019- C6-C36//BTEX - 24 Analytes U P/PCB Ultra Tra	Organo Tins (TBT)									
	27.3	0+	10.00a	2	7/03/07	15:40	Ana	Analy TPH (PAHs OC/O	l S		•							
ab identification	Date	Time	Matrix	Come la Marsha		Estimated Level of	Total				E	Enviro		ental [Divisio	on	-+-	
	26-3.5			Sample Number		Contamination	no	Tick required	analytes				Sy	dney				
(2)	26.20	*	Sediment		H7	Intermediate		X	x				Worł	< Orde	ər			
			Sediment		H8	Intermediate		x	x									
(\mathbf{J})			Sediment		H9	Intermediate	1					EC	5 07	703	904	7		
(4)			Sediment		H10	_		X	X									
(5)						Intermediate		X	X									
(6)			Sediment		H17	Intermediate	-	X	X								· .	
			Sediment		H18	Intermediate		X	x									
	-		Sediment		H21	Intermediate		X	x		Т	eleph	one : (61-2-87	84 855	5		
8			Sediment	-	H22	Intermediate		X	x								+	
9			Sediment		H23	Intermediate		x	x						ا <i>م</i> ان م			
\odot			Sediment		H24	Intermediate	-	X				RA	ų į	WO	3K			
\odot			Sediment		H25	Intermediate			X) :	120	70	390	4			2
12			Sediment		H26	Intermediate		X	X	1		L .		1. 1			18886	
(13)			Sediment		H28			X	X					560		15/		
(14)						Intermediate		X	X	DA	TE	2	710	3/07			1 <u>.</u> 1	
(15)			Sediment		H31	Intermediate		X	X			1	1.1		+ !.	~4		
(16)		+	Sediment		H37	Intermediate		X	x	52	LIT	1.2.2	}7					,
	4		Sediment	· · · · · · · · · · · · · · · · · · ·	H38	Intermediate		x	X		ĒS	070	039	08				,
(17)			Sediment		QC3	Intermediate		x	x				*****	******	*****	A 5 8 3 8	VAN N	
(18)	\mathbf{V}		Sediment		QC4	Intermediate		x	x)
	•					2			-									
	\sim		*	1		\sim												
arks:											1					+	\rightarrow	
historical data av	vailable. Ple	ase send	d results to	Dr Carsten Ma	atthai (Email:			18 (2 identical	18									
sten_matthai@u						TOTAL												
	" Container Ty Bottle: VC = H	pe and Pr vdrochlori	eservative C	odes: P = Neutra rved Vial; VS = Si	I Plastic; N = Nitric Acid Preser	rved; C = Sodium Hydroxide	Preserv	red; J = Solven	t Washed	Acid Rinsed	Jar; S	= Solver	nt Wash	ed Acid F	linsed G	ass		
rier Job No:																		
			Sena res	uits to Carste	n_Matthai@urscorp.com	ו א			NOT	E: SAMPLE					· · · · · ·			
								· · · · · · · · · · · · · · · · · · ·		AND HAZ	ARDOU	IS SUBS	TANCE	S				



ALS Environmental

CERTIFICATE OF ANALYSIS

Client	🗄 URS AUSTRALIA (NSW) PTY LTD	Laboratory	Environmental Division Sydney	Page	∴ 1 of 7
Contact	: MR CARSTEN MATTHAI	Contact	ິ Victor Kedicioglu	Work Order	⁻ ES0703908
Address	: LEVEL 3, 116 MILLER STREET NORTH SYDNEY NSW AUSTRALIA 2060	Address	277-289 Woodpark Road Smithfield NSW Australia 2164		200703300
E-mail	: carsten_matthai@urscorp.com	E-mail	Victor.Kedicioglu@alsenviro.com		
Telephone	÷ 89255500	Telephone	<i>∵</i> 61-2-8784 8555		
Facsimile	ž 89255555	Facsimile	∑ 61-2-8784 8500		
Project	2 43217595 Sediment Study	Quote number	: SY/019/07 V2	Date received	27 Mar 2007
Order number	: - Not provided -			Date issued	23 Apr 2007
C-O-C number	- Not provided -			No. of samples	- Received 18
Site	∴ - Not provided -				Analysed : 18

ALSE - Excellence in Analytical Testing

Page Number: 2 of 7Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703908

Comments

This report for the ALSE reference ES0703908 supersedes any previous reports with this reference. Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Analytical Results for Samples Submitted
- 1 Surrogate Recovery Data

The analytical procedures used by ALS Environmental have been developed from established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

When moisture determination has been performed, results are reported on a dry weight basis. When a reported 'less than' result is higher than the LOR, this may be due to primary sample extracts/digestion dilution and/or insuffient sample amount for analysis. Surrogate Recovery Limits are static and based on USEPA SW846 or ALS-QWI/EN38 (in the absence of specified USEPA limits). Where LOR of reported result differ from standard LOR, this may be due to high moisture, reduced sample amount or matrix interference. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number, LOR = Limit of Reporting. * Indicates failed Surrogate Recoveries.

Page Number: 3 of 7Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703908

Analytical Paculta		С	lient Sample ID :	H7	H8	H9	H10	H17
Analytical Results	Sampl	e Matrix T	ype / Description :	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sar	mple Date / Time :	26 Mar 2007				
				15:00	15:00	15:00	15:00	15:00
		Labo	ratory Sample ID :					
Analyte	CAS number	LOR	Units	ES0703908-001	ES0703908-002	ES0703908-003	ES0703908-004	ES0703908-005
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	73.3	74.5	75.2	64.4	62.2
EP090: Organotin Compounds				•		•	•	
Tributyltin	56573-85-4	0.5	µgSn/kg	1.6	5.2	5.8	6.6	3.4
EP090S: Organotin Surrogate								
Tripropyltin		0.1	%	84.2	82.0	67.0	82.1	66.9

Page Number: 4 of 7Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703908

Analytical Paculta		C	lient Sample ID :	H18	H21	H22	H23	H24
Analytical Results	Sampl	e Matrix T	ype / Description :	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sar	nple Date / Time :	26 Mar 2007				
				15:00	15:00	15:00	15:00	15:00
		Labo	atory Sample ID :					
Analyte	CAS number	LOR	Units	ES0703908-006	ES0703908-007	ES0703908-008	ES0703908-009	ES0703908-010
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	61.9	64.3	72.3	78.7	76.5
EP090: Organotin Compounds				•				
TributyItin	56573-85-4	0.5	µgSn/kg	1.6	125	10.4	1.8	1.8
EP090S: Organotin Surrogate				•				
Tripropyltin		0.1	%	42.0	75.3	55.8	70.1	46.1

Page Number: 5 of 7Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703908

Applytical Paculta		Cli	ent Sample ID :	H25	H26	H28	H31	H37
Analytical Results	Sample Matrix Type / Description :		SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	
		Sam	ple Date / Time :	26 Mar 2007				
				15:00	15:00	15:00	15:00	15:00
		Labora	tory Sample ID :					
Analyte	CAS number	LOR	Units	ES0703908-011	ES0703908-012	ES0703908-013	ES0703908-014	ES0703908-015
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	36.5	59.6	48.1	61.6	65.0
EP090: Organotin Compounds					•	•	•	
Tributyltin	56573-85-4	0.5 µ	JgSn∕kg	22.9	114	41.5	1.4	10.4
EP090S: Organotin Surrogate								
Tripropyltin		0.1	%	76.6	53.0	69.2	62.2	92.8

Page Number: 6 of 7Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703908

Analytical Paculta			Client Sample ID :	H38	QC3	QC4
Analytical Results	Sample Matrix Type / Description :				SEDIMENT	SEDIMENT
		Sa	mple Date / Time :		26 Mar 2007	26 Mar 2007
		Labo	oratory Sample ID :		15:00	15:00
Analyte	CAS number	LOF	Units	ES0703908-016	ES0703908-017	ES0703908-018
EA055: Moisture Content						
Moisture Content (dried @ 103°C)		1.0	%	58.9	63.1	74.6
EP090: Organotin Compounds						
Tributyltin	56573-85-4	0.5	µgSn/kg	4.5	0.8	8.2
EP090S: Organotin Surrogate						
Tripropyltin		0.1	%	81.8	55.0	90.2

Surrogate Control Limits

Matrix Type: SOIL - Surrogate Control Limits			Surrogate Control Limits
Method name	Analyte name	Lower Limit	Upper Limit
EP090: Organotin Analysis			
EP090S: Organotin Surrogate	Tripropyltin	34	108

ALS Environmental

QUALITY CONTROL REPORT

Client	: URS AUSTRALIA (NSW) PTY LTD	Laboratory	: Environmental Division Sydney	Page	: 1 of 4
Contact Address	: CARSTEN MATTHAI : LEVEL 3, 116 MILLER STREET NORTH	Contact Address	: Victor Kedicioglu : 277-289 Woodpark Road Smithfield	Work order	ES0703908
	SYDNEY NSW AUSTRALIA 2060		NSW Australia 2164	Amendment No.	:
Project	: 43217595 Sediment Study	Quote number	: SY/019/07 V2	Date received	: 27 Mar 2007
Order number	: - Not provided -			Date issued	: 23 Apr 2007
C-O-C number	- Not provided -				
Site	- Not provided -				
E-mail	: carsten_matthai@urscorp.com	E-mail	: Victor.Kedicioglu@alsenviro.com	No. of samples	
Telephone	: 89255500	Telephone	: 61-2-8784 8555	Received	: 18
Facsimile	: 89255555	Facsimile	: 61-2-8784 8500	Analysed	: 18

This final report for the ALSE work order reference ES0703908 supersedes any previous reports with this reference.

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Laboratory Duplicates (DUP); Relative Percentage Difference (RPD) and Acceptance Limits
- 1 Method Blank (MB) and Laboratory Control Samples (LCS); Recovery and Acceptance Limits
- 1 Matrix Spikes (MS); Recovery and Acceptance Limits

ALSE - Excellence in Analytical Testing

NATA Accredited Laboratory - 825

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IED 17025

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic	
signing has been carried out in compliance with procedures specified in 21 CFR Part 11.	

in	Signatory	Department
's	Carsten Emrich	Organics - NATA 825 (818 - Brisbane)
nts.	Kim McCabe	Inorganics - NATA 825 (818 - Brisbane)
се	Stephen Hislop	Inorganics - NATA 825 (818 - Brisbane)

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703908	Page Number	: 2 of 4	(ALS)
Project	:	43217595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	: 23 Apr 2007	ALS Environmental

Quality Control Report - Laboratory Duplicates (DUP)

The quality control term **Laboratory Duplicate** refers to an intralaboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations:* **LOR** = *Limit of Reporting,* **RPD** = *Relative Percent Difference.* * Indicates failed QC. The permitted ranges for the RPD of Laboratory Duplicates (relative percent deviation) are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting:- Result < 10 times LOR, no limit - Result between 10 and 20 times LOR, 0% - 50% - Result > 20 times LOR, 0% - 20%

Matrix Type: SOIL

						, , , , , , , , , , , , , , , , , , , ,
Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
EA055: Moisture Conten	t					
EA055: Moisture Conte	nt - (QC Lot: 382076)			%	%	%
EB0703485-001	Anonymous	Moisture Content (dried @ 103°C)	1.0 %	9.8	10.0	1.7
ES0703908-003	Н9	Moisture Content (dried @ 103°C)	1.0 %	75.2	75.0	0.2
EA055: Moisture Conte	nt - (QC Lot: 382077)			%	%	%
ES0703908-016	H38	Moisture Content (dried @ 103°C)	1.0 %	58.9	58.7	0.3
EP090: Organotin Comp	ounds					
EP090: Organotin Com	oounds - (QC Lot: 385661)			µgSn/kg	µgSn/kg	%
ES0703908-001	H7	Tributyltin	0.5 µgSn/kg	1.6	1.5	9.0
ES0703908-011	H25	Tributyltin	0.5 µgSn/kg	22.9	19.2	17.6

Laboratory Duplicates (DUP) Report

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703908	Page Number	:	3 of 4	(ALS)
Project	:	43217595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	:	23 Apr 2007	ALS Environmental

Quality Control Report - Method Blank (MB) and Laboratory Control Samples (LCS)

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of actual laboratory data. Flagged outliers on control limits for inorganics tests may be within the NEPM specified data quality objective of recoveries in the range of 70 to 130%. Where this occurs, no corrective action is taken. Abbreviations: LOR = Limit of reporting.

Matrix Type: SOIL

Method Blank (MB) and Laboratory Control Samples (LCS) Report

		Method blank	Actual	Results	Recove	ery Limits
		result	Spike concentration	Spike Recovery	Dynamic Re	covery Limits
Analyte name	LOR			LCS	Low	High
EP090: Organotin Compounds						
EP090: Organotin Compounds - (QC Lot: 385661)		µgSn/kg	µgSn/kg	%	%	%
Tributyltin	0.5 µgSn/kg	25		92.2	28	130
	0.5 µgSn/kg	<0.5				

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703908	Page Number	:	4 of 4	(ALS)
Project	:	43217595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	:	23 Apr 2007	ALS Environmental

Quality Control Report - Matrix Spikes (MS)

The quality control term **Matrix Spike (MS)** refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQO's). 'Ideal' recovery ranges stated may be waived in the event of sample matrix interferences. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations: LOR = Limit of Reporting, RPD = Relative Percent Difference*. * Indicates failed QC

Matrix Type: SOIL

							ina	
					Actual	Results	Recove	ry Limits
			Sample Result	Spike Recovery	Static Limits			
Analyte name	Laboratory Sample ID	Client Sample ID	LOR	Spike Concentration		MS	Low	High
EP090: Organotin Compounds								
EP090: Organotin Compounds -	(QC Lot: 385661)		µgSn/kg	µgSn/kg	%	%	%	
Tributyltin	ES0703908-002	H8	0.5 µgSn/kg	25	5.2	47.1	20	130

Matrix Spike (MS) Report

ALS Environmental

INTERPRETIVE QUALITY CONTROL REPORT

Client	:	URS AUSTRALIA (NSW) PTY LTD	Laboratory	:	Environmental Division Sydney	Page	:	1 of 5
Contact	:	CARSTEN MATTHAI	Contact	:	Victor Kedicioglu			
Address	:	LEVEL 3, 116 MILLER STREET NORTH SYDNEY NSW AUSTRALIA 2060	Address	:	277-289 Woodpark Road Smithfield NSW Australia 2164	Work order	:	ES0703908
						Amendment No.	:	
Project	:	43217595 Sediment Study	Quote number	:	SY/019/07 V2	Date received	:	27 Mar 2007
Order number	:	- Not provided -				Date issued	:	23 Apr 2007
C-O-C number	:	- Not provided -						
Site	:	- Not provided -						
E-mail	:	carsten_matthai@urscorp.com	E-mail	:	Victor.Kedicioglu@alsenviro.com	No. of samples		
Telephone	:	89255500	Telephone	:	61-2-8784 8555	Received	:	18
Facsimile	:	89255555	Facsimile	:	61-2-8784 8500	Analysed	:	18

This Interpretive Quality Control Report was issued on 23 Apr 2007 for the ALS work order reference ES0703908 and supersedes any previous reports with this reference. This report contains the following information:

1 Analysis Holding Time Compliance

1 Quality Control Type Frequency Compliance

1 Summary of all Quality Control Outliers

1 Brief Method Summaries

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703908	Page Number	: 2 of 5	(ALS)
Project	:	43217595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	: 23 Apr 2007	ALS Environmenta

Interpretive Quality Control Report - Analysis Holding Time

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the sample aliquot was taken. Elapsed time to analysis represents time from sampling where no extraction / digestion is involved or time from extraction / digestion where this is present. For composite samples, sampling date/time is taken as that of the oldest sample contributing to that composite. Sample date/time for laboratory produced leaches are taken from the completion date/time of the leaching process. Outliers for holding time are based on USEPA SW846, APHA, AS and NEPM (1999). Failed outliers, refer to the 'Summary of Outliers'.

Matrix Type: SOIL

Method		Date Sampled	Ex	traction / Preparatio	on		Analysis	
Container / Client Sample ID(s)		-	Date extracted	Due for extraction		Date analysed	Due for analysis	Pass?
EA055-103: Moisture Content								
Soil Glass Jar - Unpreserved								
Н7,	Н8,	26 Mar 2007				29 Mar 2007	2 Apr 2007	Pass
Н9,	H10,							
H17,	H18,							
H21,	H22,							
H23,	H24,							
H25,	H26,							
H28,	H31,							
H37,	H38,							
QC3,	QC4							
EP090: Organotin Analysis								
Soil Glass Jar - Unpreserved								
Н7,	H8,	26 Mar 2007	12 Apr 2007	9 Apr 2007	Fail by 3 days	20 Apr 2007	22 May 2007	Pass
Н9,	H10,							
H17,	H18,							
H21,	H22,							
H23,	H24,							
H25,	H26,							
H28,	H31,							
H37,	H38,							
QC3,	QC4							

Analysis Holding Time and Preservation

Interpretive Quality Control Report - Frequency of Quality Control Samples

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which this work order was processed. Actual rate should be greater than or equal to the expected rate.

Matrix Type: SOIL					Frequency of Quality Control Samp
Quality Control Sample Type	Co	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
EA055-103: Moisture Content	3	26	11.5	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP090: Organotin Analysis	2	18	11.1	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
Laboratory Control Samples (LCS)					
EP090: Organotin Analysis	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
Method Blanks (MB)					
EP090: Organotin Analysis	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
Matrix Spikes (MS)					
EP090: Organotin Analysis	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703908	Page Number	:	4 of 5	(ALS)
Project	:	43217595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	:	23 Apr 2007	ALS Environmen

Interpretive Quality Control Report - Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged on the 'Quality Control Report'. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). Flagged outliers on control limits for inorganics tests may be within the NEPM specified data quality objective of recoveries in the range of 70 to 130%. Where this occurs, no corrective action is taken. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot.

Non-surrogates

- 1 For all matrices, no RPD recovery outliers occur for the duplicate analysis.
- 1 For all matrices, no method blank result outliers occur.
- l For all matrices, no laboratory spike recoveries breaches occur.
- l For all matrices, no matrix spike recoveries breaches occur.

Surrogates

1 For all matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time

The following report highlights outliers within this 'Interpretive Quality Control Report - Analysis Holding Time'.

Method		Date Sampled	Ex	traction / Preparatio	on		Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Pass?	Date analysed	Due for analysis	Pass?
EP090: Organotin Analysis								
Soil Glass Jar - Unpreserved								
H7,	Н8,	26 Mar 2007	12 Apr 2007	9 Apr 2007	Fail by 3 days	20 Apr 2007	22 May 2007	Pass
Н9,	H10,		-			-		
H17,	H18,							
H21,	H22,							
H23,	H24,							
H25,	H26,							
H28,	H31,							
H37,	H38,							
QC3,	QC4							

Outliers : Frequency of Quality Control Samples

The following report highlights outliers within this 'Interpretive Quality Control Report - Frequency of Quality Control Samples'.

1 No frequency outliers occur.

' ' - '

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703908	Page Number	: 5 of 5	(ALS)
Project	:	43217595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	: 23 Apr 2007	ALS Environmental

Method Reference Summary

The analytical procedures used by ALS Environmental are based on established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house procedure are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

Matrix Type: SEDIMENT

Method Reference Summary

Preparation Methods

ORG35 : Organotin Sample Preparation - In house. 20g sample is spiked with surrogate and leached in a methanol:acetic acid:UHP water mix and vacuum filtered. Reagents and solvents are added to the sample and the mixture tumbled. The butyltin compounds are simultaneously derivatised and extracted. The extract is further extracted with petroleum ether. The resultant extracts are combined and concentrated for analysis.

Analytical Methods

EA055-103 : Moisture Content - A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (1999) Schedule B(3) (Method 102)

EP090 : Organotin Analysis - (USEPA SW 846 - 8270D) Prepared sample extracts are analysed by GC/MS coupled with high volume injection, and quantified against an established calibration curve.

ALS Environmental

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive report

Client Details	;		Laboratory D	etails
Client	:	URS AUSTRALIA (NSW) PTY LTD	Laboratory	Environmental Division Sydney
Contact	:	CARSTEN MATTHAI	Manager	: Victor Kedicioglu
Address	:	LEVEL 3, 116 MILLER STREET NORTH SYDNEY NSW AUSTRALIA 2060	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Project	:	43217595 Sediment Study	Quote number	: ES20070014
Order number C-O-C Number Site Sampler	::	- Not provided - - Not provided - - Not provided - CARSTEN MATTHAI	Work order	[:] ES0703908
E-mail	:	carsten_matthai@urscorp.com	E-mail	: Victor.Kedicioglu@alsenviro.com
Telephone	:	89255500	Telephone	: 61-2-8784 8555
Facsimile	:	89255555	Facsimile	: 61-2-8784 8500
Dates				
Date Samples Rec	eived	: 27 Mar 2007	SRA Issue Date	:
Scheduled Report	ing Da	ate : 23 Apr 2007	Client Requested Dat	te : 23 Apr 2007
Delivery Deta	nils			
Mode of Delivery		: Carrier.	Temperature	: 6.2'C - Ice present
No. of coolers/box	es	: 1 HARD	No. of samples	- Received 18
Security Seal		: Intact.		- Analysed 18

Comments

1 Samples received in appropriately pretreated and preserved containers.

1 Sample(s) have been received within recommended holding times.

1 THIS BATCH IS FOR TBT ANALYSIS ONLY AND SPLIT FROM ES0703904.

1 Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil

] Please direct any turn around / technical queries to the laboratory contact designated above.

1 Analytical work for this work order will be conducted at ALSE Sydney.

1 Sample Disposal - Aqueous (14 days), Solid (90 days) from date of completion of work order.

1 When the sampling time is not supplied on the COC documentation, ALSE defaults the sampling time to that of the COC 'relinquishment' time (if supplied). If this also is not supplied, ALSE defaults the sampling time to the 'time of receipt at Laboratory'.

SAMPLE RECEIPT NOTIFICATION (SRN) - continued

Client	: URS AUSTRALIA (NSW) PTY LTD	Work Order	: ES0703908
Project	: 43217595 Sediment Study	ALS Quote Reference	: ES20070014

Summary of Sample(s) / Container(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as moisture and preparation tasks, that form an implicit part of that package.

ALS Sample ID.	Client Sample ID - Sample Date				R	equested	Analysi	5		
		EA055-103 - SOIL	Moisture Content	EP090 (solids) - SOIL Organotins						
ES0703908-001	H7 - 26 Mar 2007		1	1						
ES0703908-002	H8 - 26 Mar 2007		1	i						
ES0703908-003	H9 - 26 Mar 2007		i	i						
ES0703908-004	H10 - 26 Mar 2007		1	1						
ES0703908-005	H17 - 26 Mar 2007		1	1						
ES0703908-006	H18 - 26 Mar 2007		1	1						
ES0703908-007	H21 - 26 Mar 2007		1	1						
ES0703908-008	H22 - 26 Mar 2007		1	1						
ES0703908-009	H23 - 26 Mar 2007		1	1						
ES0703908-010	H24 - 26 Mar 2007		1	1						
ES0703908-011	H25 - 26 Mar 2007		1	1						
ES0703908-012	H26 - 26 Mar 2007		1	1						
ES0703908-013	H28 - 26 Mar 2007		1	1						
ES0703908-014	H31 - 26 Mar 2007		1	1						
ES0703908-015	H37 - 26 Mar 2007		1	1						
ES0703908-016	H38 - 26 Mar 2007		1]						
ES0703908-017	QC3 - 26 Mar 2007		1]						
ES0703908-018	QC4 - 26 Mar 2007		1	1						
		Total(s) :	18	18						

SAMPLE RECEIPT NOTIFICATION (SRN) - continued

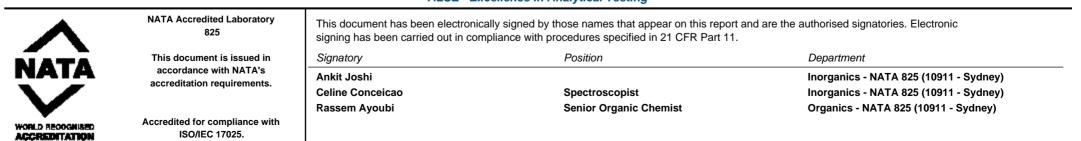
Client Project	: URS AUSTRALIA (NSW) PTY LTD : 43217595 Sediment Study		ES0703908 ES20070014	ALS Enuironmentei
Requ	lested Reports			
1 AC	COUNTS PAYABLE			
-	A4 - AU Tax Invoice	Email	sydney_accounts@urscorp.com	
1 CA	ARSTEN MATTHAI			
-	A4 - Quality Control Report - NEPM format	Email	carsten_matthai@urscorp.com	
-	A4 - Interpretive Quality Control Report - NEPM format	t Email	carsten_matthai@urscorp.com	
-	A4 - Certificate of Analysis - NEPM format	Email	carsten_matthai@urscorp.com	
-	ENMRG Export Format	Email	carsten_matthai@urscorp.com	
-	A4 - Sample Receipt Notification - Comprehensive for	mat Email	carsten_matthai@urscorp.com	
-	Chain of Custody Acknowledgement	Email	carsten_matthai@urscorp.com	
-	Invoice	Email	carsten_matthai@urscorp.com	

Sample Container(s) / Preservation Non-Compliance Log

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

1 No sample container / preservation non-compliance exist.

				CHAIN OF CUSTODY FORM					Sheet 1 of	1									
THIS COLUMN				CHAIN OF CUSTODT FORM					and the second se	ainer S	ize, Type		ative						
FOR LAB USE ONLY	FROM:			DATE: 27-3-07	TO: ALS Smithfield	Г					ind Analys iner Ident								
	URS (AUSTR ACN 000 691				277 Woodpark Rd	0	250	150					-						
	North Sydney		eet		Smithfield 2164	Size mL Type*	Glass	Glass											
43217595					1	Preserva tive													
1 F	Ph: 8925 550	0		Fax: 8925 5555 Sampler(s): Carsten Matthai		Code													
12-4-07	Project No: 43217595 Project Manager Carsten Matth Agreement No:	nai	9-07 URS V2	Signature(s): Mathababababababababababababababababababa			019-07 URS V2 FEX Low Level, es Ultra Frace, a Trace (Table A)	1s (TBT)		TB Or	T 3 L /								
	Released for	-	/ :	Received for Labora	NIS SUCINEU		a SylB1 36)/B1 Analyr	o Tins											
	Carsten Matth Date:	nai	Time:	Frank Ferraro 27/03/07	Time:	Analytes	lytes pe l (c6-c ls - 24.	Organo					· · -		. 1		Hold		
Sample cold?	27.30	7	10.000	27/03/07	15:40	Ana	Anal TPH PAH OC/6	ō		_	Envir		ntal L Iney	JIVISI	on		Ť		
Lab identification	Date	Time	Matrix	Sample Number	Estimated Level of	Total no	Tick required a	analytes		_		Work		٩r					
	26-3.07		Sediment	H7	Intermediate		x	x							0		x		
$\overline{\mathcal{O}}$	1		Sediment	H8	Intermediate		х	x		_	E	507	03	900	5		x		
(3)			Sediment	H9	Intermediate		x	x		-							x		
(4)		1	Sediment	H10	Intermediate		X	x									x		
			Sediment	H17	Intermediate		x	x									x		
6		1	Sediment	H18	Intermediate		X	x		- 1111	Teleph	one ' f	1-2-87	84 854	55		x		
- A			Sediment	H21	Intermediate	1	x	x		-	1010	0.10 1 0		01000			x		
(R)			Sediment	H22	Intermediate		х	x		- 					1	ana	x		
Â			Sediment	H23	Intermediate		x	x	CC)NT	RAC	T W	'ORI	K			x		
(10)			Sediment	H24	Intermediate		x	X	W):	ESG-	030	108	}			x		
		1	Sediment	H25	Intermediate		x	x			ALK	Bris	bano	- 78	T	62	x		
(2)		1	Sediment	H26	Intermediate	ŝ	X	x	LA	D:		/				8 5	x		
(13)		1	Sediment	H28	Intermediate	·	x	x	DA	TE		710	3107				x		
(14)		1	Sediment	H31	Intermediate		×	x	SP		TB		o lit				x		
(5)		1	Sediment	H37	Intermediate		x	x								K 25	x		
(6)	1	1	Sediment	H38	Intermediate		x	x		••••	0763	700	*			* 2	x		
	1	1	Sediment	QC3	Intermediate		x	X									x		
(8)	31		Sediment	QC4	Intermediate	£	X	x									x		
	\mathbf{V}		Geament													_			
	\sim					-	×			-				\sim					
Remarks:							18 (2												
carsten matthai@u	moo moozr).		to Dr Carsten Matthai (Email: 9 Codes: P = Neutral Plastic; N = Nitric Acid F	TOTAL		identical jars each)	18						d Class					



ALS Environmental

CERTIFICATE OF ANALYSIS

Client	🗄 URS AUSTRALIA (NSW) PTY LTD	Laboratory	Environmental Division Sydney	Page	ິ 1 of 8
Contact	: MR CARSTEN MATTHAI	Contact	ິ Victor Kedicioglu	Work Order	[:] ES0703910
Address	LEVEL 3, 116 MILLER STREET NORTH	Address	277-289 Woodpark Road Smithfield NSW		200700310
	SYDNEY NSW AUSTRALIA 2060		Australia 2164	Amendment No.	÷ 1
E-mail	☆ carsten_matthai@urscorp.com	E-mail	Victor.Kedicioglu@alsenviro.com		
Telephone	÷ 89255500	Telephone	ິ 61-2-8784 8555		
Facsimile	2 89255555	Facsimile	ິ 61-2-8784 8500		
Project	2 43217595 Sediment Study	Quote number	: SY/019/07 V2	Date received	ੰ 27 Mar 2007
Order number	∴ - Not provided -			Date issued	13 Apr 2007
C-O-C number	- Not provided -			No. of samples	- Received : 8
Site	[∠] - Not provided -				Analysed : 8

ALSE - Excellence in Analytical Testing

Page Number: 2 of 8Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703910

Comments

This report for the ALSE reference ES0703910 supersedes any previous reports with this reference. Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Analytical Results for Samples Submitted
- 1 Surrogate Recovery Data

The analytical procedures used by ALS Environmental have been developed from established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

When moisture determination has been performed, results are reported on a dry weight basis. When a reported 'less than' result is higher than the LOR, this may be due to primary sample extracts/digestion dilution and/or insuffient sample amount for analysis. Surrogate Recovery Limits are static and based on USEPA SW846 or ALS-QWI/EN38 (in the absence of specified USEPA limits). Where LOR of reported result differ from standard LOR, this may be due to high moisture, reduced sample amount or matrix interference. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number, LOR = Limit of Reporting. * Indicates failed Surrogate Recoveries.

Specific comments for Work Order **ES0703910**

Poor duplicate precision was observed for Calcium due to heterogenity.

Page Number: 3 of 8Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703910

Nork Order . E30703910								
Analytical Deculta		Clien	t Sample ID :	H40	H41	H42	QC1	H3
Analytical Results	Samp	ole Matrix Type	/ Description :	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sample	e Date / Time :	26 Mar 2007				
				15:00	15:00	15:00	15:00	15:00
		Laborator	ry Sample ID :				_	
Analyte	CAS number	LOR	Units	ES0703910-001	ES0703910-002	ES0703910-003	ES0703910-004	ES0703910-005
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0 %		34.3	51.2	44.0	48.7	62.2
ED093T: Total Major Cations								
Calcium	7440-70-2	10 mg	/kg	30900	5320	7820	38100	
Magnesium	7439-95-4	10 mg	/kg	2500	4390	3700	3940	
EG005T: Total Metals by ICP-AES					-			•
Aluminium	7429-90-5	50 mg	/kg	6860	14000	10600	11800	
Arsenic	7440-38-2	5 mg		12	13	14	14	
Barium	7440-39-3	10 mg		20	30	20	30	
Beryllium	7440-41-7	1 mg	/kg	<1	1	<1	1	
Cadmium	7440-43-9	1 mg	/kg	<1	<1	<1	<1	
Chromium	7440-47-3	2 mg	/kg	11	20	16	17	
Cobalt	7440-48-4	2 mg	/kg	8	11	9	9	
Copper	7440-50-8	5 mg	/kg	8	18	15	16	
Iron	7439-89-6	50 mg	/kg	17100	25700	21400	22300	
Lead	7439-92-1	5 mg	/kg	13	21	18	19	
Manganese	7439-96-5	5 mg	/kg	347	285	261	279	
Nickel	7440-02-0	2 mg	/kg	8	15	11	12	
Strontium	7440-24-6	2 mg	/kg	139	54	57	168	
Vanadium	7440-62-2	5 mg	/kg	30	46	36	39	
Zinc	7440-66-6	5 mg	/kg	47	61	56	58	
EG020T: Total Metals by ICP-MS								
Silver	7440-22-4	0.1 mg	/kg					<0.1
EG035T: Total Mercury by FIMS								
Mercury	7439-97-6	0.1 mg	/kg	0.2	<0.1	<0.1	<0.1	
EK059G: NOX as N by Discrete Anal	yser							
Nitrite + Nitrate as N (Sol.)		0.100 mg	/kg	0.259	0.194	0.116	<0.100	
EK061G: Total Kjeldahl Nitrogen as N	1							
Total Kjeldahl Nitrogen as N		20 mg	/kg	640	1420	1220	1460	
EK071G: Reactive Phosphorous as P	by discrete anal				I.	1	I	I
Reactive Phosphorus as P		0.100 mg	/kg	0.106	<0.100	<0.100	<0.100	
EP004: Organic Matter		5	- - -		<u> </u>	1	<u> </u>	
Total Organic Carbon		0.5 %	1	1.0	4.0	3.1	2.5	
EP066: Polychlorinated Biphenyls (P	CB)				I	l	l	
Total Polychlorinated biphenyls		0.10 mg	/ka	<0.10	<0.10	<0.10	<0.10	
EP068A: Organochlorine Pesticides ((OC)		- 3					
alpha-BHC	319-84-6	0.05 mg	/ka	<0.05	<0.05	<0.05	<0.05	
	010 04 0	0.00 mg	"" ' 9		-5.00			

Page Number: 4 of 8Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703910

Amelytical Deculta		Client Sample ID :	H40	H41	H42	QC1	H3
Analytical Results	Samp	le Matrix Type / Description :	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sample Date / Time :	26 Mar 2007				
			15:00	15:00	15:00	15:00	15:00
		Laboratory Sample ID :					
Analyte	CAS number	LOR Units	ES0703910-001	ES0703910-002	ES0703910-003	ES0703910-004	ES0703910-005
EP068A: Organochlorine Pesticide	es (OC)						
Hexachlorobenzene (HCB)	118-74-1	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
beta-BHC	319-85-7	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
gamma-BHC	58-89-9	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
delta-BHC	319-86-8	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Heptachlor	76-44-8	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Aldrin	309-00-2	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Heptachlor epoxide	1024-57-3	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
trans-Chlordane	5103-74-2	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
alpha-Endosulfan	959-98-8	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
cis-Chlordane	5103-71-9	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Dieldrin	60-57-1	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
4.4'-DDE	72-55-9	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Endrin	72-20-8	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
beta-Endosulfan	33213-65-9	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
4.4'-DDD	72-54-8	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Endrin aldehyde	7421-93-4	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Endosulfan sulfate	1031-07-8	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
4.4'-DDT	50-29-3	0.2 mg/kg	<0.2	<0.2	<0.2	<0.2	
Endrin ketone	53494-70-5	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Methoxychlor	72-43-5	0.2 mg/kg	<0.2	<0.2	<0.2	<0.2	
EP068B: Organophosphorus Pesti	cides (OP)					•	•
Dichlorvos	62-73-7	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Demeton-S-methyl	919-86-8	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Monocrotophos	6923-22-4	0.2 mg/kg	<0.2	<0.2	<0.2	<0.2	
Dimethoate	60-51-5	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Diazinon	333-41-5	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Chlorpyrifos-methyl	5598-13-0	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Parathion-methyl	298-00-0	0.2 mg/kg	<0.2	<0.2	<0.2	<0.2	
Malathion	121-75-5	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Fenthion	55-38-9	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Chlorpyrifos	2921-88-2	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Parathion	56-38-2	0.2 mg/kg	<0.2	<0.2	<0.2	<0.2	
Pirimphos-ethyl	23505-41-1	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Chlorfenvinphos	470-90-6	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Bromophos-ethyl	4824-78-6	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Fenamiphos	22224-92-6	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Prothiofos	34643-46-4	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	

Page Number: 5 of 8Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703910

E30705910							
Analytical Deculta		Client Sample ID :	H40	H41	H42	QC1	H3
Analytical Results	Samp	ole Matrix Type / Description :	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sample Date / Time :	26 Mar 2007				
			15:00	15:00	15:00	15:00	15:00
		Laboratory Sample ID :	ES0703910-001	ES0703910-002	ES0703910-003	ES0703910-004	ES0703910-005
Analyte	CAS number	LOR Units	E30/03910-001	E30703910-002	E30703910-003	E30703910-004	E30703910-005
EP068B: Organophosphorus Pest							
Ethion	563-12-2	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Carbophenothion	786-19-6	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
Azinphos Methyl	86-50-0	0.05 mg/kg	<0.05	<0.05	<0.05	<0.05	
EP075(SIM)B: Polynuclear Aroma							
Naphthalene	91-20-3	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Acenaphthylene	208-96-8	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Acenaphthene	83-32-9	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Fluorene	86-73-7	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Phenanthrene	85-01-8	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Anthracene	120-12-7	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Fluoranthene	206-44-0	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Pyrene	129-00-0	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Benz(a)anthracene	56-55-3	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Chrysene	218-01-9	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Benzo(b)fluoranthene	205-99-2	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Benzo(k)fluoranthene	207-08-9	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Benzo(a)pyrene	50-32-8	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5 mg/kg	<0.5	<0.9	<0.5	<0.5	
EP080/071: Total Petroleum Hydro	ocarbons			1	1	I	
C6 - C9 Fraction		10 mg/kg	<10	<10	<10	<10	
C10 - C14 Fraction		50 mg/kg	<50	<60	<50	<50	
C15 - C28 Fraction		100 mg/kg	<100	<120	<100	<100	
C29 - C36 Fraction		100 mg/kg	<100	<120	<100	<100	
EP080: BTEX				1	1 	I	I
Benzene	71-43-2	0.2 mg/kg	<0.2	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5 mg/kg	<0.5	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5 mg/kg	<0.5	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3	0.5 mg/kg	<0.5	<0.5	<0.5	<0.5	
ortho Vulono	106-42-3	0.5 mg//rg	-0 F	_0 E	-05		
ortho-Xylene	95-47-6	0.5 mg/kg	<0.5	<0.5	<0.5	<0.5	
EP066S: PCB Surrogate	005/0/0	0.4 %	400	1	70 5	000	
Decachlorobiphenyl	2051-24-3	0.1 %	126	114	72.5	60.0	
EP068S: Organochlorine Pesticide	-				1		
Dibromo-DDE	21655-73-2	0.1 %	73.5	85.6	105	92.8	

Page Number: 6 of 8Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703910

Analytical Paculta		Client	Sample ID :	H40	H41	H42	QC1	H3
Analytical Results	Samp	le Matrix Type /	Description :	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sample	Date / Time :	26 Mar 2007				
				15:00	15:00	15:00	15:00	15:00
		Laboratory	/ Sample ID :					
Analyte	CAS number	LOR	Units	ES0703910-001	ES0703910-002	ES0703910-003	ES0703910-004	ES0703910-005
EP068T: Organophosphorus Pesticid	le Surrogate				•			
DEF	78-48-8	0.1 %		70.0	76.6	92.2	83.8	
EP075(SIM)S: Phenolic Compound S	urrogates							
Phenol-d6	13127-88-3	0.1 %		106	109	108	111	
2-Chlorophenol-D4	93951-73-6	0.1 %		92.8	96.2	95.2	97.1	
2.4.6-Tribromophenol	118-79-6	0.1 %		55.8	72.0	113	68.9	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1 %		91.6	91.1	91.1	92.3	
Anthracene-d10	1719-06-8	0.1 %		89.8	88.0	87.9	89.4	
4-Terphenyl-d14	1718-51-0	0.1 %		83.7	81.9	82.6	83.2	
EP080S: TPH(V)/BTEX Surrogates					t.			•
1.2-Dichloroethane-D4	17060-07-0	0.1 %		91.0	114	104	106	
Toluene-D8	2037-26-5	0.1 %		80.2	108	114	87.6	
4-Bromofluorobenzene	460-00-4	0.1 %		84.5	87.4	92.8	96.4	

Page Number: 7 of 8Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0703910

		Clie	nt Sample ID :	H5	H7	QC2
Analytical Results	Samp		• / Description :	-	SEDIMENT	SEDIMENT
			e Date / Time :		26 Mar 2007	26 Mar 2007
				15:00	15:00	15:00
		Laborato	ory Sample ID :			
Analyte	CAS number	LOR	Units	ES0703910-006	ES0703910-007	ES0703910-008
EA055: Moisture Content						
Moisture Content (dried @ 103°C)		1.0 %		66.1	75.6	64.7
EG020T: Total Metals by ICP-MS					•	•
Silver	7440-22-4	0.1 m	g/kg	0.1	0.2	0.1

Page Number : 8 of 8 Client URS AUSTRALIA (NSW) PTY LTD Work Order : ES0703910

Surrogate Control Limits

Matrix Type: SOIL - Surrogate Control Limits

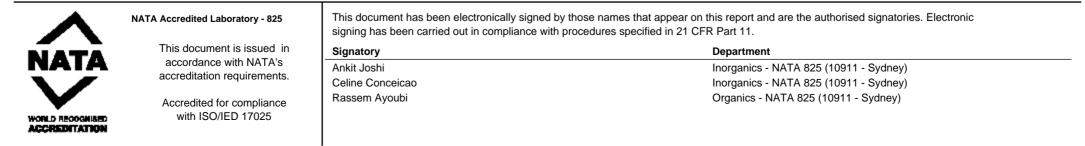
Matrix Type: SOIL - Surrogate Control Limits			Surrogate Control Limits
Method name	Analyte name	Lower Limit	Upper Limit
EP066: Polychlorinated Biphenyls (PCB)		•	•
EP066S: PCB Surrogate	Decachlorobiphenyl	10	164
EP068: Pesticides by GCMS			
EP068S: Organochlorine Pesticide Surrogate	Dibromo-DDE	10	136
EP068T: Organophosphorus Pesticide Surrogate	DEF	10	136
EP075(SIM): PAH/Phenols (SIM)			
EP075(SIM)S: Phenolic Compound Surrogates	Phenol-d6	24	113
	2-Chlorophenol-D4	23	134
	2,4,6-Tribromophenol	19	122
EP075(SIM)T: PAH Surrogates	2-Fluorobiphenyl	30	115
	Anthracene-d10	27	133
	4-Terphenyl-d14	18	137
EP080: TPH Volatiles/BTEX			
EP080S: TPH(V)/BTEX Surrogates	1,2-Dichloroethane-D4	80	120
	Toluene-D8	81	117
	4-Bromofluorobenzene	74	121

ALS Environmental

QUALITY CONTROL REPORT

Client	:	URS AUSTRALIA (NSW) PTY LTD	Laboratory	: Environmental Division Sydney	Page	:	1 of 17
Contact	:	CARSTEN MATTHAI	Contact	: Victor Kedicioglu			
Address	:	LEVEL 3, 116 MILLER STREET NORTH SYDNEY NSW AUSTRALIA 2060	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164	Work order	:	ES0703910
					Amendment No.	:	1
Project	:	43217595 Sediment Study	Quote number	: SY/019/07 V2	Date received	:	27 Mar 2007
Order number	:	- Not provided -			Date issued	:	13 Apr 2007
C-O-C number	:	- Not provided -					
Site	:	- Not provided -					
E-mail	:	carsten_matthai@urscorp.com	E-mail	: Victor.Kedicioglu@alsenviro.com	No. of samples		
Telephone	:	89255500	Telephone	: 61-2-8784 8555	Received	:	8
Facsimile	:	89255555	Facsimile	: 61-2-8784 8500	Analysed	:	8

This final report for the ALSE work order reference ES0703910 supersedes any previous reports with this reference.


Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Laboratory Duplicates (DUP); Relative Percentage Difference (RPD) and Acceptance Limits
- 1 Method Blank (MB) and Laboratory Control Samples (LCS); Recovery and Acceptance Limits
- 1 Matrix Spikes (MS); Recovery and Acceptance Limits

Work order specific comments

Poor duplicate precision was observed for Calcium due to heterogenity.

ALSE - Excellence in Analytical Testing

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703910	Page Number	: 2 of 17	(ALS)
Project	:	43217595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	: 13 Apr 2007	ALS Environmental

Quality Control Report - Laboratory Duplicates (DUP)

The quality control term **Laboratory Duplicate** refers to an intralaboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations:* **LOR** = *Limit of Reporting,* **RPD** = *Relative Percent Difference.* * Indicates failed QC. The permitted ranges for the RPD of Laboratory Duplicates (relative percent deviation) are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting:- Result < 10 times LOR, no limit - Result between 10 and 20 times LOR, 0% - 50% - Result > 20 times LOR, 0% - 20%

Matrix Type: SOIL

Laboratory Sample ID Client Sample ID Analvte name LOR Original Result Duplicate Result RPD EA055: Moisture Content % % % EA055: Moisture Content - (QC Lot: 381165) ES0703904-001 Anonymous Moisture Content (dried @ 103°C) 1.0 % 74.0 71.5 3.4 ES0703904-010 Anonymous Moisture Content (dried @ 103°C) 1.0 % 76.0 76.2 0.2 % EA055: Moisture Content - (QC Lot: 381166) % % ES0703910-003 H42 Moisture Content (dried @ 103°C) 1.0 % 44.0 45.5 3.4 EA055: Moisture Content - (QC Lot: 381545) % % % EB0703312-001 Anonymous Moisture Content (dried @ 103°C) 1.0 % 29.2 30.1 3.2 ES0703910-005 62.2 H3 Moisture Content (dried @ 103°C) 1.0 % 63.1 1.4 ED093T: Total Major Cations ED093T: Total Major Cations - (QC Lot: 382445) % mg/kg mg/kg H41 ES0703910-002 Calcium 10 ma/ka 5320 2830 61.2 4390 4360 06 Magnesium 10 mg/kg EG005T: Total Metals by ICP-AES % EG005T: Total Metals by ICP-AES - (QC Lot: 382443) mg/kg mg/kg ES0703910-002 H41 Aluminium 50 mg/kg 14000 14300 2.1 Arsenic 13 12 8.6 5 mg/kg 30 30 0.0 Barium 10 mg/kg Beryllium 1 mg/kg 1 1 0.0 Cadmium <1 <1 0.0 1 mg/kg Chromium 2 mg/kg 20 21 0.0 11 Cobalt 11 2 mg/kg 0.0 Copper 18 18 0.0 5 mg/kg Iron 50 mg/kg 25700 25700 0.2 21 22 Lead 5 mg/kg 0.0 Manganese 5 mg/kg 285 254 11.8 Nickel 15 16 0.0 2 mg/kg

Laboratory Duplicates (DUP) Report

ALS
LS Environmental

	USTRALIA (NSW) PTY LTD	Work Order : ES0703910		Page Number : 3 of	17	(ALS)
Project : 4321759	95 Sediment Study	ALS Quote Reference : SY/019/07 V2		Issue Date : 13 A	Apr 2007 📃	S Environment
Matrix Type: SOIL					Laborator	ry Duplicates (DUP) Repo
Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
EG005T: Total Metals by I	CP-AES - continued					
EG005T: Total Metals by	ICP-AES - (QC Lot: 382443) - continued			mg/kg	mg/kg	%
ES0703910-002	H41	Strontium	2 mg/kg	54	46	17.6
		Vanadium	5 mg/kg	46	47	3.2
		Zinc	5 mg/kg	61	63	2.2
EG020T: Total Metals by I	CP-MS					
EG020T: Total Metals by	ICP-MS - (QC Lot: 382446)			mg/kg	mg/kg	%
ES0703910-005	НЗ	Silver	0.1 mg/kg	<0.1	<0.1	0.0
EG035T: Total Mercury by	FIMS			-	•	
EG035T: Total Mercury	by FIMS - (QC Lot: 382444)			mg/kg	mg/kg	%
ES0703910-002	H41	Mercury	0.1 mg/kg	<0.1	<0.1	0.0
EK059G: NOX as N by Dis	screte Analyser		-	4	•	•
EK059G: NOX as N by D	iscrete Analyser - (QC Lot: 381576)			mg/kg	mg/kg	%
ES0703985-002	Anonymous	Nitrite + Nitrate as N (Sol.)	0.100 mg/kg	1.22	1.12	8.1
EK061G: Total Kjeldahl Ni	trogen as N		1	ł	•	I
EK061G: Total Kjeldahl N	litrogen as N - (QC Lot: 386986)			mg/kg	mg/kg	%
ES0704079-003	Anonymous	Total Kjeldahl Nitrogen as N	20 mg/kg	970	940	2.7
ES0704079-004	Anonymous	Total Kjeldahl Nitrogen as N	20 mg/kg	1560	1490	4.3
EK071G: Reactive Phosph	norous as P by discrete analyser		1	1		
EK071G: Reactive Phosp	horous as P by discrete analyser - (QC Lot: 381577)			mg/kg	mg/kg	%
ES0703985-001	Anonymous	Reactive Phosphorus as P			0.079	
EP004: Organic Matter				I	ł	
EP004: Organic Matter - ((QC Lot: 381329)			%	%	%
ES0703910-002	H41	Total Organic Carbon	0.5 %	4.0	3.9	0.0
EP066: Polychlorinated Bi	phenyls (PCB)		1	1		
EP066: Polychlorinated E	Biphenyls (PCB) - (QC Lot: 381558)			mg/kg	mg/kg	%
ES0703910-001	H40	Total Polychlorinated biphenyls	0.10 mg/kg	<0.10	<0.10	0.0
EP068A: Organochlorine I	Pesticides (OC)		1		I	L
	Pesticides (OC) - (QC Lot: 381557)			mg/kg	mg/kg	%
ES0703910-001	H40	alpha-BHC	0.05 mg/kg	<0.05	<0.05	0.0
		Hexachlorobenzene (HCB)	0.05 mg/kg	<0.05	<0.05	0.0

ALS	
LS Environmenta	

: 4 of 17

: 13 Apr 2007

Page Number

Issue Date

Matrix Type: SOIL Laboratory Duplicates (DUP) Report Laboratory Sample ID Client Sample ID Analyte name LOR **Original Result** Duplicate Result RPD EP068A: Organochlorine Pesticides (OC) - continued EP068A: Organochlorine Pesticides (OC) - (QC Lot: 381557) - continued % mg/kg mg/kg ES0703910-001 H40 beta-BHC 0.05 mg/kg < 0.05 < 0.05 0.0 gamma-BHC 0.05 mg/kg < 0.05 < 0.05 0.0 delta-BHC 0.05 mg/kg < 0.05 < 0.05 0.0 < 0.05 0.0 Heptachlor 0.05 mg/kg < 0.05 Aldrin < 0.05 < 0.05 0.0 0.05 mg/kg Heptachlor epoxide 0.05 mg/kg < 0.05 < 0.05 0.0 trans-Chlordane 0.05 mg/kg < 0.05 < 0.05 0.0 alpha-Endosulfan 0.05 mg/kg < 0.05 < 0.05 0.0 cis-Chlordane 0.05 mg/kg < 0.05 < 0.05 0.0 Dieldrin 0.05 mg/kg < 0.05 < 0.05 0.0 4,4'-DDE < 0.05 < 0.05 0.0 0.05 mg/kg Endrin < 0.05 < 0.05 0.0 0.05 mg/kg beta-Endosulfan 0.05 mg/kg < 0.05 < 0.05 0.0 4.4'-DDD 0.05 mg/kg < 0.05 < 0.05 0.0 < 0.05 Endrin aldehyde < 0.05 0.0 0.05 mg/kg Endosulfan sulfate 0.05 mg/kg < 0.05 < 0.05 0.0 4,4'-DDT 0.2 mg/kg <0.2 <0.2 0.0 Endrin ketone < 0.05 < 0.05 0.0 0.05 mg/kg Methoxychlor 0.2 mg/kg <0.2 <0.2 0.0 EP068B: Organophosphorus Pesticides (OP) EP068B: Organophosphorus Pesticides (OP) - (QC Lot: 381557) mg/kg mg/kg % ES0703910-001 H40 Dichlorvos < 0.05 < 0.05 0.0 0.05 mg/kg Demeton-S-methyl 0.05 mg/kg < 0.05 < 0.05 0.0 Monocrotophos 0.2 mg/kg < 0.2 < 0.2 0.0 Dimethoate 0.05 mg/kg < 0.05 < 0.05 0.0 Diazinon < 0.05 < 0.05 0.0 0.05 mg/kg < 0.05 Chlorpyrifos-methyl 0.05 mg/kg < 0.05 0.0 Parathion-methyl 0.2 mg/kg < 0.2 <0.2 0.0

0.05 mg/kg

< 0.05

< 0.05

: ES0703910

SY/019/07 V2

:

Work Order

Malathion

ALS Quote Reference

URS AUSTRALIA (NSW) PTY LTD

43217595 Sediment Study

Client

Project

:

:

0.0

ALS
LS Environmental

: 5 of 17

: 13 Apr 2007

Page Number

Issue Date

Matrix Type: SOIL Laboratory Duplicates (DUP) Report Laboratory Sample ID Client Sample ID Analyte name LOR **Original Result** Duplicate Result RPD EP068B: Organophosphorus Pesticides (OP) - continued EP068B: Organophosphorus Pesticides (OP) - (QC Lot: 381557) - continued % mg/kg mg/kg ES0703910-001 H40 Fenthion 0.05 mg/kg < 0.05 < 0.05 0.0 Chlorpyrifos 0.05 mg/kg < 0.05 < 0.05 0.0 Parathion 0.2 mg/kg < 0.2 <0.2 0.0 <0.05 0.0 Pirimphos-ethyl 0.05 mg/kg < 0.05 < 0.05 < 0.05 0.0 Chlorfenvinphos 0.05 mg/kg Bromophos-ethyl 0.05 mg/kg < 0.05 < 0.05 0.0 Fenamiphos 0.05 mg/kg < 0.05 < 0.05 0.0 Prothiofos 0.05 mg/kg < 0.05 < 0.05 0.0 Ethion 0.05 mg/kg < 0.05 < 0.05 0.0 Carbophenothion 0.05 mg/kg < 0.05 < 0.05 0.0 < 0.05 < 0.05 0.0 Methyl Azinphos 0.05 mg/kg EP075(SIM)B: Polynuclear Aromatic Hydrocarbons EP075(SIM)B: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381393) mg/kg mg/kg % H40 <0.5 ES0703910-001 Naphthalene 0.5 mg/kg < 0.5 0.0 Acenaphthylene <0.5 <0.5 0.0 0.5 mg/kg Acenaphthene 0.5 mg/kg < 0.5 < 0.5 0.0 <0.5 <0.5 Fluorene 0.5 mg/kg 0.0 Phenanthrene 0.5 mg/kg <0.5 <0.5 0.0 Anthracene 0.5 mg/kg < 0.5 < 0.5 0.0 Fluoranthene 0.5 mg/kg < 0.5 < 0.5 0.0 <0.5 < 0.5 0.0 Pyrene 0.5 mg/kg Benz(a)anthracene <0.5 <0.5 0.0 0.5 mg/kg Chrysene 0.5 mg/kg < 0.5 <0.5 0.0 Benzo(b)fluoranthene 0.5 mg/kg < 0.5 < 0.5 0.0 <0.5 <0.5 0.0 Benzo(k)fluoranthene 0.5 mg/kg Benzo(a)pyrene 0.5 mg/kg <0.5 <0.5 0.0 Indeno(1,2,3,cd)pyrene 0.5 mg/kg < 0.5 < 0.5 0.0 Dibenz(a,h)anthracene 0.5 mg/kg <0.5 <0.5 0.0

0.5 mg/kg

<0.5

<0.5

: ES0703910

SY/019/07 V2

:

Work Order

Benzo(g,h,i)perylene

ALS Quote Reference

URS AUSTRALIA (NSW) PTY LTD

43217595 Sediment Study

Client

Project

:

:

0.0

ALS	
LS Environmenta	1

	NUSTRALIA (NSW) PTY LTD 195 Sediment Study	Work Order : ES070391 ALS Quote Reference : SY/019/07		Page Number : 6 of Issue Date : 13 A		(ALS) S Environmeni
atrix Type: SOIL						y Duplicates (DUP) Rep
Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
P080/071: Total Petroleu	um Hydrocarbons			•		
EP080/071: Total Petrole	eum Hydrocarbons - (QC Lot: 381125)			mg/kg	mg/kg	%
ES0703904-001	Anonymous	C6 - C9 Fraction	10 mg/kg	<10	<10	0.0
ES0703904-011	Anonymous	C6 - C9 Fraction	10 mg/kg	<10	<10	0.0
EP080/071: Total Petrole	eum Hydrocarbons - (QC Lot: 381157)			mg/kg	mg/kg	%
ES0703916-001	Anonymous	C6 - C9 Fraction	10 mg/kg	<10	<10	0.0
P080/071: Total Petrole	eum Hydrocarbons - (QC Lot: 381392)			mg/kg	mg/kg	%
ES0703910-001	H40	C10 - C14 Fraction	50 mg/kg	<50	<50	0.0
		C15 - C28 Fraction	100 mg/kg	<100	<100	0.0
		C29 - C36 Fraction	100 mg/kg	<100	<100	0.0
ES0703930-003	Anonymous	C10 - C14 Fraction	50 mg/kg	<50	<50	0.0
	C15 - C28 Fraction	100 mg/kg	240	280	14.8	
		C29 - C36 Fraction	100 mg/kg	<100	<100	0.0
P080: BTEX				•		
EP080: BTEX - (QC Lot:	381125)			mg/kg	mg/kg	%
ES0703904-001	Anonymous	Benzene	0.1 mg/kg	<0.2	<0.2	0.0
		Toluene	0.1 mg/kg	<0.2	<0.2	0.0
		Ethylbenzene	0.1 mg/kg	<0.2	<0.2	0.0
		meta- & para-Xylene	0.1 mg/kg	<0.2	<0.2	0.0
		ortho-Xylene	0.1 mg/kg	<0.2	<0.2	0.0
ES0703904-011	Anonymous	Benzene	0.1 mg/kg	<0.1	<0.1	0.0
		Toluene	0.1 mg/kg	<0.1	<0.1	0.0
		Ethylbenzene	0.1 mg/kg	<0.1	<0.1	0.0
		meta- & para-Xylene	0.1 mg/kg	<0.1	<0.1	0.0
		ortho-Xylene	0.1 mg/kg	<0.1	<0.1	0.0
P080: BTEX - (QC Lot:	381157)			mg/kg	mg/kg	%
ES0703916-001	Anonymous	Benzene	0.2 mg/kg	<0.2	<0.2	0.0
		Toluene	0.5 mg/kg	<0.5	<0.5	0.0
		Ethylbenzene	0.5 mg/kg	<0.5	<0.5	0.0
		meta- & para-Xylene	0.5 mg/kg	<0.5	<0.5	0.0
		ortho-Xylene	0.5 mg/kg	<0.5	<0.5	0.0

Quality Control Report - Method Blank (MB) and Laboratory Control Samples (LCS)

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of actual laboratory data. Flagged outliers on control limits for inorganics tests may be within the NEPM specified data quality objective of recoveries in the range of 70 to 130%. Where this occurs, no corrective action is taken. Abbreviations: LOR = Limit of reporting.

Matrix Type: SOIL

Method Blank (MB) and Laboratory Control Samples (LCS) Report

		Method blank	Actual Results		Recovery Limits	
		result	Spike concentration	Spike Recovery	Dynamic Recovery Limits	
Analyte name	LOR			LCS	Low	High
ED093T: Total Major Cations		-			-	
ED093T: Total Major Cations - (QC Lot: 382445)		mg/kg	mg/kg	%	%	%
Calcium	10 mg/kg	<10				
Magnesium	10 mg/kg	<10				
EG005T: Total Metals by ICP-AES						
EG005T: Total Metals by ICP-AES - (QC Lot: 382443)		mg/kg	mg/kg	%	%	%
Aluminium	50 mg/kg	<50				
Arsenic	5 mg/kg	<5				
	5 mg/kg		13.1	101	86.6	123
Barium	10 mg/kg	<10				
Beryllium	1 mg/kg	<1				
Cadmium	1 mg/kg		2.76	92.1	79.9	120
	1 mg/kg	<1				
Chromium	2 mg/kg		60.9	96.6	87.1	119
	2 mg/kg	<2				
Cobalt	2 mg/kg	<2				
Copper	5 mg/kg	<5				
	5 mg/kg		54.7	98.3	85.2	117
Iron	50 mg/kg	<50				
Lead	5 mg/kg	<5				
	5 mg/kg		55.2	93.1	82.1	117
Manganese	5 mg/kg	<5				
Nickel	2 mg/kg	<2				
	2 mg/kg		54.8	98.7	88	122
Strontium	2 mg/kg	<2				
Vanadium	5 mg/kg	<5				

Client : URS AUSTRALIA (NSW) PTY LTD	Work Order	. ES0702010		Page Number : 8 Of	F 17	ALS
Client : URS AUSTRALIA (NSW) PTY LTD Project : 43217595 Sediment Study	ALS Quote Reference	: ES0703910 : SY/019/07 V2		-		S Environmenta
Matrix Type: SOIL				Method Blank		trol Samples (LCS) Report
	Г	Method	Actual	Results	Recove	ery Limits
		blank result	Spike concentration	Spike Recovery		ecovery Limits
Analyte name	LOR			LCS	Low	High
EG005T: Total Metals by ICP-AES - continued						
EG005T: Total Metals by ICP-AES - (QC Lot: 382443) - continued		mg/kg	mg/kg	%	%	%
Zinc	5 mg/kg	<5				
	5 mg/kg		104	96.3	79	116
EG020T: Total Metals by ICP-MS				-		-
EG020T: Total Metals by ICP-MS - (QC Lot: 382446)		mg/kg	mg/kg	%	%	%
Silver	0.1 mg/kg	<0.1				
	0.1 mg/kg		5.6	82.5	70	130
EG035T: Total Mercury by FIMS						
EG035T: Total Mercury by FIMS - (QC Lot: 382444)		mg/kg	mg/kg	%	%	%
Mercury	0.1 mg/kg	<0.1				
	0.1 mg/kg		1.4	87.4	73.7	108
EK059G: NOX as N by Discrete Analyser						
EK059G: NOX as N by Discrete Analyser - (QC Lot: 381576)		mg/kg	mg/kg	%	%	%
Nitrite + Nitrate as N (Sol.)	0.1 mg/kg		4.8	92.7	70	130
	0.100 mg/kg	<0.100				
EK061G: Total Kjeldahl Nitrogen as N						
EK061G: Total Kjeldahl Nitrogen as N - (QC Lot: 386986)		mg/kg	mg/kg	%	%	%
Total Kjeldahl Nitrogen as N	20 mg/kg	<20				
	20 mg/kg		1000	111	70	130
EK071G: Reactive Phosphorous as P by discrete analyser						
EK071G: Reactive Phosphorous as P by discrete analyser - (QC Lot: 381577)		mg/kg	mg/kg	%	%	%
Reactive Phosphorus as P	0.1 mg/kg		2.5	103	70	130
	0.100 mg/kg	<0.100				
EP004: Organic Matter						
EP004: Organic Matter - (QC Lot: 381329)		%	%	%	%	%
Total Organic Carbon	0.5 %	<0.5				
EP066: Polychlorinated Biphenyls (PCB)						
EP066: Polychlorinated Biphenyls (PCB) - (QC Lot: 381558)		mg/kg	mg/kg	%	%	%

Client : URS AUSTRALIA (NSW) PTY LTD Project : 43217595 Sediment Study	Work Order ALS Quote Reference	: ES0703910 : SY/019/07 V2		Page Number : 9 of Issue Date : 13 /		
Matrix Type: SOIL	_			Method Blank	(MB) and Laboratory Con	trol Samples (LCS) Repor
	Method blank		Actual	Results	Recove	ery Limits
		result	Spike concentration	Spike Recovery	Dynamic Re	ecovery Limits
Analyte name	LOR			LCS	Low	High
EP066: Polychlorinated Biphenyls (PCB) - continued			-		-	-
EP066: Polychlorinated Biphenyls (PCB) - (QC Lot: 381558) - continued		mg/kg	mg/kg	%	%	%
Total Polychlorinated biphenyls	0.10 mg/kg	<0.10				
	0.1 mg/kg		0.5	83.2	57.4	117
EP068A: Organochlorine Pesticides (OC)	•		•	•	•	•
EP068A: Organochlorine Pesticides (OC) - (QC Lot: 381557)		mg/kg	mg/kg	%	%	%
4,4'-DDD	0.05 mg/kg		0.25	107	65.3	116
···	0.05 mg/kg	<0.05				
4,4'-DDE	0.05 mg/kg	<0.05				
	0.05 mg/kg		0.25	111	67.5	114
4,4'-DDT	0.2 mg/kg		0.25	118	58.4	127
	0.2 mg/kg	<0.2				
Aldrin	0.05 mg/kg		0.25	108	67	113
	0.05 mg/kg	<0.05				
alpha-BHC	0.05 mg/kg	<0.05				
	0.05 mg/kg		0.25	109	60.8	116
alpha-Endosulfan	0.05 mg/kg		0.25	110	65.8	116
	0.05 mg/kg	<0.05				
beta-BHC	0.05 mg/kg	<0.05				
	0.05 mg/kg		0.25	98.0	59.8	117
beta-Endosulfan	0.05 mg/kg	<0.05				
	0.05 mg/kg		0.25	110	66.1	117
cis-Chlordane	0.05 mg/kg		0.25	107	57.3	120
	0.05 mg/kg	<0.05				
delta-BHC	0.05 mg/kg		0.25	110	65.8	114
	0.05 mg/kg	<0.05				
Dieldrin	0.05 mg/kg		0.25	108	67.4	116
	0.05 mg/kg	<0.05				
Endosulfan sulfate	0.05 mg/kg		0.25	109	63.6	119
	0.05 mg/kg	<0.05				
Endrin	0.05 mg/kg	<0.05				
	0.05 mg/kg		0.25	107	63	121

ent : URS AUSTRALIA (NSW) PTY LTD iject : 43217595 Sediment Study	Work Order ALS Quote Reference	: ES0703910 : SY/019/07 V2		Page Number : 10 of 17 Issue Date : 13 Apr		S Environment
trix Type: SOIL				Method Blank (N	MB) and Laboratory Contr	
	Г	Method	Actual R	Results	Recove	ery Limits
		blank result	Spike concentration	Spike Recovery		ecovery Limits
Analyte name	LOR		t	LCS	Low	High
P068A: Organochlorine Pesticides (OC) - continued						
EP068A: Organochlorine Pesticides (OC) - (QC Lot: 381557) - continued		mg/kg	mg/kg	%	%	%
Endrin aldehyde	0.05 mg/kg		0.25	87.8	57.3	115
	0.05 mg/kg	<0.05				
Endrin ketone	0.05 mg/kg	<0.05				
	0.05 mg/kg		0.25	107	63.6	117
gamma-BHC	0.05 mg/kg		0.25	122	59.8	118
	0.05 mg/kg	<0.05				
Heptachlor	0.05 mg/kg	<0.05				
	0.05 mg/kg		0.25	114	65.6	115
Heptachlor epoxide	0.05 mg/kg		0.25	109	65.6	113
•	0.05 mg/kg	<0.05				
Hexachlorobenzene (HCB)	0.05 mg/kg		0.25	107	59.4	115
	0.05 mg/kg	<0.05				
Methoxychlor	0.2 mg/kg	<0.2				
	0.2 mg/kg		0.25	113	50.4	132
trans-Chlordane	0.05 mg/kg		0.25	108	60.7	113
	0.05 mg/kg	<0.05				
EP068B: Organophosphorus Pesticides (OP)						
EP068B: Organophosphorus Pesticides (OP) - (QC Lot: 381557)		mg/kg	mg/kg	%	%	%
Methyl Azinphos	0.05 mg/kg	<0.05				
· · · · · · · · · · · · · · · · · · ·	0.05 mg/kg		0.25	105	29.8	137
Bromophos-ethyl	0.05 mg/kg		0.25	109	64.3	114
	0.05 mg/kg	<0.05				
Carbophenothion	0.05 mg/kg	<0.05				
· · · · · · · · · · · · · · · · · · ·	0.05 mg/kg		0.25	107	59.5	119
Chlorfenvinphos	0.05 mg/kg		0.25	109	61.4	123
	0.05 mg/kg	<0.05				
Chlorpyrifos	0.05 mg/kg		0.25	110	64.2	111
	0.05 mg/kg	<0.05				
Chlorpyrifos-methyl	0.05 mg/kg		0.25	110	65.1	111
	0.05 mg/kg	<0.05				

slient : URS AUSTRALIA (NSW) PTY LTD roject : 43217595 Sediment Study	Work Order ALS Quote Reference	: ES0703910 : SY/019/07 V2		Page Number : 11 c Issue Date : 13 A		(ALS) S Environment
flatrix Type: SOIL				Method Blank	(MB) and Laboratory Con	
	Г	Method	Actual	Results	Recove	ery Limits
		blank result	Spike concentration	Spike Recovery		ecovery Limits
Analyte name	LOR			LCS	Low	High
EP068B: Organophosphorus Pesticides (OP) - continued					-	-
EP068B: Organophosphorus Pesticides (OP) - (QC Lot: 381557) - continued		mg/kg	mg/kg	%	%	%
Demeton-S-methyl	0.05 mg/kg	<0.05				
	0.05 mg/kg		0.25	73.6	10.1	159
Diazinon	0.05 mg/kg		0.25	111	64.9	111
	0.05 mg/kg	<0.05				
Dichlorvos	0.05 mg/kg		0.25	72.0	25.5	124
	0.05 mg/kg	<0.05				
Dimethoate	0.05 mg/kg		0.25	108	48.6	126
	0.05 mg/kg	<0.05				
Ethion	0.05 mg/kg		0.25	110	62	116
	0.05 mg/kg	<0.05				
Fenamiphos	0.05 mg/kg		0.25	97.4	45.5	128
	0.05 mg/kg	<0.05				
Fenthion	0.05 mg/kg	<0.05				
	0.05 mg/kg		0.25	106	64.7	110
Malathion	0.05 mg/kg		0.25	111	60.4	127
	0.05 mg/kg	<0.05				
Monocrotophos	0.2 mg/kg	<0.2				
	0.2 mg/kg		0.25	99.4	2.88	149
Parathion	0.2 mg/kg	<0.2				
	0.2 mg/kg		0.25	108	60	116
Parathion-methyl	0.2 mg/kg		0.25	109	61.4	113
	0.2 mg/kg	<0.2				
Pirimphos-ethyl	0.05 mg/kg		0.25	108	64.8	111
	0.05 mg/kg	<0.05				
Prothiofos	0.05 mg/kg		0.25	108	65.4	111
	0.05 mg/kg	<0.05				
P075(SIM)B: Polynuclear Aromatic Hydrocarbons						
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381393)		mg/kg	mg/kg	%	%	%
Acenaphthene	0.5 mg/kg	<0.5				
	0.5 mg/kg		4	104	81.5	112

Client : URS AUSTRALIA (NSW) PTY LTD Project : 43217595 Sediment Study	Work Order ALS Quote Reference	: ES0703910 : SY/019/07 V2		Page Number : 12 of Issue Date : 13 A		(ALS) <u>S Environment</u> a
Matrix Type: SOIL				Method Blank	(MB) and Laboratory Con	trol Samples (LCS) Repor
		Method blank	Actual	Results	Recove	ery Limits
		result	Spike concentration	Spike Recovery	Dynamic Re	covery Limits
Analyte name	LOR			LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons - continued			1			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons - (QC Lot: 381393) -	continued	mg/kg	mg/kg	%	%	%
Acenaphthylene	0.5 mg/kg	<0.5				
	0.5 mg/kg		4	102	79.6	113
Anthracene	0.5 mg/kg		4	106	81.1	112
	0.5 mg/kg	<0.5				
Benz(a)anthracene	0.5 mg/kg	<0.5				
	0.5 mg/kg		4	102	77.2	112
Benzo(a)pyrene	0.5 mg/kg		4	103	76.4	113
	0.5 mg/kg	<0.5				
Benzo(b)fluoranthene	0.5 mg/kg		4	109	71.8	118
	0.5 mg/kg	<0.5				
Benzo(g,h,i)perylene	0.5 mg/kg	<0.5				
	0.5 mg/kg		4	102	72.4	114
Benzo(k)fluoranthene	0.5 mg/kg		4	102	74.2	117
	0.5 mg/kg	<0.5				
Chrysene	0.5 mg/kg		4	107	79.8	114
	0.5 mg/kg	<0.5				
Dibenz(a,h)anthracene	0.5 mg/kg		4	101	71.7	113
	0.5 mg/kg	<0.5				
Fluoranthene	0.5 mg/kg	<0.5				
	0.5 mg/kg		4	104	78.8	113
Fluorene	0.5 mg/kg	<0.5				
	0.5 mg/kg		4	101	79.9	112
Indeno(1,2,3,cd)pyrene	0.5 mg/kg	<0.5				
	0.5 mg/kg		4	102	71	113
Naphthalene	0.5 mg/kg		4	104	81.9	113
	0.5 mg/kg	<0.5				
Phenanthrene	0.5 mg/kg	<0.5				
	0.5 mg/kg		4	96.0	79.4	114
Pyrene	0.5 mg/kg	<0.5				
	0.5 mg/kg		4	106	78.9	113

Client : URS AUSTRALIA (NSW) PTY LTD Project : 43217595 Sediment Study	Work Order ALS Quote Reference	: ES0703910 : SY/019/07 V2		Page Number : 13 c Issue Date : 13 /		ALS)	
Matrix Type: SOIL				Method Blank	(MB) and Laboratory Cor	ntrol Samples (LCS) Report	
		Method blank	Actua	l <u>R</u> esults	Recov	Recovery Limits	
		result	Spike concentration	Spike Recovery	Dynamic R	ecovery Limits	
Analyte name	LOR			LCS	Low	High	
EP080/071: Total Petroleum Hydrocarbons							
EP080/071: Total Petroleum Hydrocarbons - (QC Lot: 381125)		mg/kg	mg/kg	%	%	%	
C6 - C9 Fraction	10 mg/kg	<10					
	10 mg/kg		26	101	68.4	128	
EP080/071: Total Petroleum Hydrocarbons - (QC Lot: 381157)		mg/kg	mg/kg	%	%	%	
C6 - C9 Fraction	10 mg/kg		26	96.7	68.4	128	
	10 mg/kg	<10					
EP080/071: Total Petroleum Hydrocarbons - (QC Lot: 381392)		mg/kg	mg/kg	%	%	%	
C10 - C14 Fraction	50 mg/kg	<50					
	50 mg/kg		200	87.0	75.2	116	
C15 - C28 Fraction	100 mg/kg	<100					
	100 mg/kg		200	91.0	75.3	113	
C29 - C36 Fraction	100 mg/kg		200	85.0	72.6	117	
	100 mg/kg	<100					
EP080: BTEX					-		
EP080: BTEX - (QC Lot: 381125)		mg/kg	mg/kg	%	%	%	
Benzene	0.2 mg/kg		1	108	67.5	125	
	0.2 mg/kg	<0.2					
Ethylbenzene	0.5 mg/kg	<0.5					
	0.5 mg/kg		1	106	65.3	126	
meta- & para-Xylene	0.5 mg/kg	<0.5					
	0.5 mg/kg		2	103	66.5	124	
ortho-Xylene	0.5 mg/kg	<0.5					
	0.5 mg/kg		1	103	66.7	123	
Toluene	0.5 mg/kg		1	89.2	69	122	
	0.5 mg/kg	<0.5					
EP080: BTEX - (QC Lot: 381157)		mg/kg	mg/kg	%	%	%	
Benzene	0.2 mg/kg	<0.2					
	0.2 mg/kg		1	95.4	67.5	125	
Ethylbenzene	0.5 mg/kg		1	102	65.3	126	
	0.5 mg/kg	<0.5					

ALS
LS Environmental

Client : URS AUSTRALIA (NSW) PTY LTD Project : 43217595 Sediment Study	Work Order ALS Quote Reference	:	ES0703910 SY/019/07 V2		Page Number : 14 o Issue Date : 13 A	of 17 (ALS) Apr 2007 ALS Environmental		
Matrix Type: SOIL					Method Blank	(MB) and Laboratory Con	trol Samples (LCS) Report	
			Method blank	Actual	Results	Recove	ery Limits	
			result	Spike concentration	Spike Recovery	Dynamic Re	covery Limits	
Analyte name	LOR				LCS	Low	High	
EP080: BTEX - continued								
EP080: BTEX - (QC Lot: 381157) - continued			mg/kg	mg/kg	%	%	%	
meta- & para-Xylene	0.5 mg/kg		<0.5					
	0.5 mg/kg			2	96.9	66.5	124	
ortho-Xylene	0.5 mg/kg			1	95.6	66.7	123	
	0.5 mg/kg		<0.5					
Toluene	0.5 mg/kg		<0.5					
	0.5 mg/kg			1	95.2	69	122	

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703910	Page Number	:	15 of 17	(ALS)
Project	:	43217595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	:	13 Apr 2007	ALS Environmental

Quality Control Report - Matrix Spikes (MS)

The quality control term **Matrix Spike (MS)** refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQO's). 'Ideal' recovery ranges stated may be waived in the event of sample matrix interferences. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations: LOR* = *Limit of Reporting, RPD* = *Relative Percent Difference.*

Matrix Type: SOIL

Matrix Type. SOIL							Ma	iunx spike (ins) Repu
					Actual	Results	Recove	ery Limits
					Sample Result	Spike Recovery	Static	Limits
Analyte name	Laboratory Sample ID	Client Sample ID	LOR	Spike Concentration		MS	Low	High
EG005T: Total Metals by ICP-AE	S							
EG005T: Total Metals by ICP-A	ES - (QC Lot: 382443)			mg/kg	mg/kg	%	%	%
Arsenic	ES0703910-002	H41	5 mg/kg	50	13	97.5	70	130
Cadmium			1 mg/kg	50	<1	99.8	70	130
Chromium			2 mg/kg	50	20	103	70	130
Copper			5 mg/kg	250	18	110	70	130
Lead			5 mg/kg	250	21	101	70	130
Nickel			2 mg/kg	50	15	99.1	70	130
Zinc			5 mg/kg	250	61	119	70	130
EG035T: Total Mercury by FIMS	8							
EG035T: Total Mercury by FIM	IS - (QC Lot: 382444)			mg/kg	mg/kg	%	%	%
Mercury	ES0703910-002	H41	0.1 mg/kg	5	<0.1	104	70	130
EK059G: NOX as N by Discrete	Analyser							
EK059G: NOX as N by Discret	e Analyser - (QC Lot: 381	576)		mg/kg	mg/kg	%	%	%
Nitrite + Nitrate as N (Sol.)	ES0703985-002	Anonymous	0.1 mg/kg	3.0	1.22	85.5	70	130
EK061G: Total Kjeldahl Nitroger	n as N							
EK061G: Total Kjeldahl Nitroge	en as N - (QC Lot: 386986)		mg/kg	mg/kg	%	%	%
Total Kjeldahl Nitrogen as N	ES0704079-003	Anonymous	20 mg/kg	500	970	93.0	70	130
EK071G: Reactive Phosphorous	s as P by discrete analyse	r						
EK071G: Reactive Phosphorou	us as P by discrete analys	er - (QC Lot: 381577)		mg/kg	mg/kg	%	%	%
Reactive Phosphorus as P	ES0703985-001	Anonymous		2.5		* Not Determined	70	130
EP066: Polychlorinated Biphen	yls (PCB)							
EP066: Polychlorinated Bipher	nyls (PCB) - (QC Lot: 3815	558)		mg/kg	mg/kg	%	%	%
Total Polychlorinated biphenyls	ES0703910-001	H40	0.1 mg/kg	0.5	<0.10	88.1	70	130
EP068A: Organochlorine Pestic	ides (OC)							
				1		•		

Matrix Spike (MS) Report

ALS	
LS Environmenta	

Client Project	:	URS AUSTRALIA (NSW) PTY LTD 43217595 Sediment Study		Work Order ALS Quote Reference	:	ES0703910 SY/019/07 V2		Page Numbe Issue Date	er : 16 of 17 : 13 Apr 2007		(ALS Environe	
Matrix Ty	pe: SO	L								Ма	trix Spike (MS	5) Report
								Actual		Recovery Limits Static Limits		
Analyte	e name	Laboratory Sample ID	Client Sample ID			LOR	Spike Concentration	Sample Result	Spike Recovery MS	Low	Limits High	,
EP068A:	Organo	ochlorine Pesticides (OC) - continued										

EP068A: Organochlorine Pe	sticides (OC) - continued					-		-		
EP068A: Organochlorine P	esticides (OC) - (QC Lot: 38	1557)		mg/kg	mg/kg	%	%	%		
gamma-BHC	ES0703910-001	H40	0.05 mg/kg	0.25	<0.05	113	75.65	110.44		
Heptachlor			0.05 mg/kg	0.25	<0.05	72.2	72.2	106.71		
Aldrin			0.05 mg/kg	0.25	<0.05	82.4	77.54	107.0		
Dieldrin			0.05 mg/kg	0.25	<0.05	80.6	76.37	109.7		
Endrin			0.05 mg/kg	1	<0.05	85.2	68.51	119.47		
4,4'-DDT			0.2 mg/kg	1	<0.2	69.4	67.12	118.10		
EP068B: Organophosphorus Pesticides (OP)										
EP068B: Organophosphore	us Pesticides (OP) - (QC Lot	: 381557)		mg/kg	mg/kg	%	%	%		
Diazinon	ES0703910-001	H40	0.05 mg/kg	0.25	<0.05	88.0	75.85	107.06		
Chlorpyrifos-methyl			0.05 mg/kg	0.25	<0.05	85.4	74.84	107.91		
Pirimphos-ethyl			0.05 mg/kg	0.25	<0.05	95.8	67.98	109.42		
Bromophos-ethyl			0.05 mg/kg	0.25	<0.05	86.0	74.94	107.37		
Prothiofos			0.05 mg/kg	0.25	<0.05	114	75.45	106.05		
EP075(SIM)B: Polynuclear A	Aromatic Hydrocarbons							-		
EP075(SIM)B: Polynuclear	Aromatic Hydrocarbons - (C	PC Lot: 381393)		mg/kg	mg/kg	%	%	%		
Acenaphthene	ES0703910-001	H40	0.5 mg/kg	10	<0.5	86.9	70	130		
Pyrene			0.5 mg/kg	10	<0.5	92.4	70	130		
EP080/071: Total Petroleum	Hydrocarbons									
EP080/071: Total Petroleun	n Hydrocarbons - (QC Lot: 3	81125)		mg/kg	mg/kg	%	%	%		
C6 - C9 Fraction	ES0703904-001	Anonymous	10 mg/kg	26	<10	88.1	70	130		
EP080/071: Total Petroleun	n Hydrocarbons - (QC Lot: 3	81157)		mg/kg	mg/kg	%	%	%		
C6 - C9 Fraction	ES0703916-001	Anonymous	10 mg/kg	26	<10	91.7	70	130		
EP080/071: Total Petroleun	n Hydrocarbons - (QC Lot: 3	81392)		mg/kg	mg/kg	%	%	%		
C10 - C14 Fraction	ES0703910-001	H40	50 mg/kg	700	<50	82.6	70	130		
C15 - C28 Fraction			100 mg/kg	3400	<100	120	70	130		
C29 - C36 Fraction			100 mg/kg	3600	<100	82.8	70	130		
EP080: BTEX										
EP080: BTEX - (QC Lot: 38	31125)			mg/kg	mg/kg	%	%	%		

ALS	
LS Environmenta	

Report version : QC_NA 3.03

Client URS AUSTRALIA (NSW) PTY LTD Work Order : ES0703910 Page Number : 17 of 17 : Project 43217595 Sediment Study ALS Quote Reference : SY/019/07 V2 Issue Date : 13 Apr 2007 : A Matrix Type: SOIL

Matrix Spike (MS) Report

]	Actual	Results	Recove	ery Limits
		- I			Sample Result	Spike Recovery		: Limits
Analyte name	Laboratory Sample ID	Client Sample ID	LOR	Spike Concentration		MS	Low	High
P080: BTEX - continued								
EP080: BTEX - (QC Lot: 3	881125)- continued			mg/kg	mg/kg	%	%	%
Benzene	ES0703904-001	Anonymous	0.1 mg/kg	2.5	<0.2	95.9	70	130
Toluene			0.1 mg/kg 2.5	<0.2	84.2	70	130	
Ethylbenzene			0.1 mg/kg	2.5	<0.2	97.6	70	130
meta- & para-Xylene			0.1 mg/kg	2.5	<0.2	112	70	130
ortho-Xylene			0.1 mg/kg	2.5	<0.2	111	70	130
EP080: BTEX - (QC Lot: 3	381157)			mg/kg	mg/kg	%	%	%
Benzene	ES0703916-001	Anonymous	0.2 mg/kg	2.5	<0.2	91.7	70	130
Toluene			0.5 mg/kg	2.5	<0.5	69.6	70	130
Ethylbenzene			0.5 mg/kg	2.5	<0.5	98.3	70	130
meta- & para-Xylene			0.5 mg/kg	2.5	<0.5	96.8	70	130
ortho-Xylene			0.5 mg/kg	2.5	<0.5	94.9	70	130

ALS Environmental

INTERPRETIVE QUALITY CONTROL REPORT

Client	:	URS AUSTRALIA (NSW) PTY LTD	Laboratory	:	Environmental Division Sydney	Page	:	1 of 8
Contact	:	CARSTEN MATTHAI	Contact	:	Victor Kedicioglu			
Address	:	LEVEL 3, 116 MILLER STREET NORTH SYDNEY NSW AUSTRALIA 2060	Address	:	277-289 Woodpark Road Smithfield NSW Australia 2164	Work order	:	ES0703910
						Amendment No.	:	1
Project	:	43217595 Sediment Study	Quote number	:	SY/019/07 V2	Date received	:	27 Mar 2007
Order number	:	- Not provided -				Date issued	:	13 Apr 2007
C-O-C number	:	- Not provided -						
Site	:	- Not provided -						
E-mail	:	carsten_matthai@urscorp.com	E-mail	:	Victor.Kedicioglu@alsenviro.com	No. of samples		
Telephone	:	89255500	Telephone	:	61-2-8784 8555	Received	:	8
Facsimile	:	89255555	Facsimile	:	61-2-8784 8500	Analysed	:	8

This Interpretive Quality Control Report was issued on 13 Apr 2007 for the ALS work order reference ES0703910 and supersedes any previous reports with this reference. This report contains the following information:

1 Analysis Holding Time Compliance

1 Quality Control Type Frequency Compliance

1 Summary of all Quality Control Outliers

1 Brief Method Summaries

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703910	Page Number	:	2 of 8	(ALS)
Project	:	43217595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	:	13 Apr 2007	ALS Environmenta

Interpretive Quality Control Report - Analysis Holding Time

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the sample aliquot was taken. Elapsed time to analysis represents time from sampling where no extraction / digestion is involved or time from extraction / digestion where this is present. For composite samples, sampling date/time is taken as that of the oldest sample contributing to that composite. Sample date/time for laboratory produced leaches are taken from the completion date/time of the leaching process. Outliers for holding time are based on USEPA SW846, APHA, AS and NEPM (1999). Failed outliers, refer to the 'Summary of Outliers'.

Matrix Type: SOIL

Analysis Holding Time and Preservation

Method	Date Sampled	Ex	traction / Preparatio	n	Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Pass?	Date analysed	Due for analysis	Pass?	
EA055-103: Moisture Content								
Soil Glass Jar - Unpreserved								
H40, H41,	26 Mar 2007				28 Mar 2007	2 Apr 2007	Pass	
H42, QC1								
Soil Glass Jar - Unpreserved								
Н3, Н5,	26 Mar 2007				29 Mar 2007	2 Apr 2007	Pass	
H7, QC2								
ED093T: Major Cations by ICPAES - Total								
Soil Glass Jar - Unpreserved								
H40, H41,	26 Mar 2007	30 Mar 2007	22 Sep 2007	Pass	30 Mar 2007	22 Sep 2007	Pass	
H42, QC1								
EG005T: Total Metals by ICP-AES					-			
Soil Glass Jar - Unpreserved								
H40, H41,	26 Mar 2007	30 Mar 2007	22 Sep 2007	Pass	30 Mar 2007	22 Sep 2007	Pass	
H42, QC1								
EG020Z-T: Total Metals by ICP-MS - Suite Z								
Soil Glass Jar - Unpreserved								
НЗ, Н5,	26 Mar 2007	30 Mar 2007	22 Sep 2007	Pass	2 Apr 2007	22 Sep 2007	Pass	
H7, QC2								
EG035T: Total Mercury by FIMS						11		
Soil Glass Jar - Unpreserved								
H40, H41,	26 Mar 2007	30 Mar 2007	23 Apr 2007	Pass	2 Apr 2007	23 Apr 2007	Pass	
H42, QC1								
EK059G: Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser			1		1			
Soil Glass Jar - Unpreserved								
H40, H41,	26 Mar 2007	29 Mar 2007	22 Sep 2007	Pass	29 Mar 2007	22 Sep 2007	Pass	
H42, QC1								
EK061G: TKN as N By Discrete Analyser			1		1			
Soil Glass Jar - Unpreserved								
H40, H41,	26 Mar 2007	10 Apr 2007	22 Sep 2007	Pass	10 Apr 2007	22 Sep 2007	Pass	
H42, QC1								
EK071G: Reactive Phosphorus as P-Soluble By Discrete Analyser			1					
Soil Glass Jar - Unpreserved								
H40, H41,	26 Mar 2007	29 Mar 2007	22 Sep 2007	Pass	29 Mar 2007	22 Sep 2007	Pass	
H42, QC1								
EP004: Organic Matter								

ALS	
LS Environments	-

Client : URS AUSTRALIA (NSW) PTY LTD	Work Order :	ES0703910	Page Number : 3 of 8			(ALS)			
Project : 43217595 Sediment Study	ALS Quote Reference :	SY/019/07 V2	Issue Date : 13 Apr 2007			ALS Environmenta			
Matrix Type: SOIL						Analy	sis Holding Time	and Preservation	
Method		Date Sampled	E>	traction / Preparation	า		Analysis		
Container / Client Sample ID(s)		-	Date extracted	Due for extraction	Pass?	Date analysed	Due for analysis	Pass?	
EP004: Organic Matter - continued									
Soil Glass Jar - Unpreserved									
H40, H41,		26 Mar 2007				29 Mar 2007	2 Apr 2007	Pass	
H42, QC1									
EP066: Polychlorinated Biphenyls (PCB)		•							
Soil Glass Jar - Unpreserved									
H40, H41,		26 Mar 2007	31 Mar 2007	9 Apr 2007	Pass	2 Apr 2007	10 May 2007	Pass	
H42, QC1									
EP068: Pesticides by GCMS									
Soil Glass Jar - Unpreserved									
H40, H41,		26 Mar 2007	31 Mar 2007	9 Apr 2007	Pass	2 Apr 2007	10 May 2007	Pass	
H42, QC1									
EP071: TPH - Semivolatile Fraction									
Soil Glass Jar - Unpreserved									
H40, H41,		26 Mar 2007	28 Mar 2007	9 Apr 2007	Pass	30 Mar 2007	7 May 2007	Pass	
H42, QC1									
EP075(SIM): PAH/Phenols (SIM)									
Soil Glass Jar - Unpreserved									
H40, H41,		26 Mar 2007	28 Mar 2007	9 Apr 2007	Pass	30 Mar 2007	7 May 2007	Pass	
H42, QC1									
EP080: TPH Volatiles/BTEX			-						
Soil Glass Jar - Unpreserved									
H42, QC1		26 Mar 2007	28 Mar 2007	9 Apr 2007	Pass	3 Apr 2007	9 Apr 2007	Pass	
Soil Glass Jar - Unpreserved									
H40, H41		26 Mar 2007	28 Mar 2007	9 Apr 2007	Pass	31 Mar 2007	9 Apr 2007	Pass	

Interpretive Quality Control Report - Frequency of Quality Control Samples

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which this work order was processed. Actual rate should be greater than or equal to the expected rate.

Quality Control Sample Type	Co	ount	Rat	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
aboratory Duplicates (DUP)					
EA055-103: Moisture Content	5	44	11.4	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
ED093T: Major Cations by ICPAES - Total	1	4	25.0	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EG005T: Total Metals by ICP-AES	1	4	25.0	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EG020Z-T: Total Metals by ICP-MS - Suite Z	1	4	25.0	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EG035T: Total Mercury by FIMS	1	4	25.0	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EK059G: Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser	1	6	16.7	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EK061G: TKN as N By Discrete Analyser	2	10	20.0	9.5	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EK071G: Reactive Phosphorus as P-Soluble By Discrete Analyser	1	4	25.0	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP004: Organic Matter	1	4	25.0	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP066: Polychlorinated Biphenyls (PCB)	1	7	14.3	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP068: Pesticides by GCMS	1	4	25.0	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP071: TPH - Semivolatile Fraction	2	16	12.5	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP075(SIM): PAH/Phenols (SIM)	1	8	12.5	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP080: TPH Volatiles/BTEX	3	23	13.0	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
aboratory Control Samples (LCS)	· · · ·			•	
EG005T: Total Metals by ICP-AES	1	4	25.0	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EG020Z-T: Total Metals by ICP-MS - Suite Z	1	4	25.0	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EG035T: Total Mercury by FIMS	1	4	25.0	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EK059G: Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser	1	6	16.7	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EK061G: TKN as N By Discrete Analyser	1	10	10.0	4.8	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EK071G: Reactive Phosphorus as P-Soluble By Discrete Analyser	1	4	25.0	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP004: Organic Matter	1	4	25.0	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP066: Polychlorinated Biphenyls (PCB)	1	7	14.3	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP068: Pesticides by GCMS	1	4	25.0	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP071: TPH - Semivolatile Fraction	1	16	6.3	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP075(SIM): PAH/Phenols (SIM)	1	8	12.5	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP080: TPH Volatiles/BTEX	2	23	8.7	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement

	ALS
LS	Environmental

Client : URS AUSTRALIA (NSW) PTY LTD Work 0	Order : E	ES0703910			Page N	lumber : 5 of 8	(ALS)
Project : 43217595 Sediment Study ALS Qu	uote Reference : S	SY/019/07 V2			Issue D	ate : 13 Apr 2007	ALS Environmental
Matrix Type: SOIL							Frequency of Quality Control Samples
Quality Control Sample Type		Со	unt	Rate	e (%)	Quality Control Specification	
Method		QC	Regular	Actual	Expected		
Method Blanks (MB)							
ED093T: Major Cations by ICPAES - Total		1	4	25.0	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EG005T: Total Metals by ICP-AES		1	4	25.0	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EG020Z-T: Total Metals by ICP-MS - Suite Z		1	4	25.0	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EG035T: Total Mercury by FIMS		1	4	25.0	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EK059G: Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser		1	6	16.7	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EK061G: TKN as N By Discrete Analyser		1	10	10.0	4.8	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EK071G: Reactive Phosphorus as P-Soluble By Discrete Analyser		1	4	25.0	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EP004: Organic Matter		1	4	25.0	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EP066: Polychlorinated Biphenyls (PCB)		1	7	14.3	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EP068: Pesticides by GCMS		1	4	25.0	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EP071: TPH - Semivolatile Fraction		1	16	6.3	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EP075(SIM): PAH/Phenols (SIM)		1	8	12.5	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EP080: TPH Volatiles/BTEX		2	23	8.7	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
Matrix Spikes (MS)							
EG005T: Total Metals by ICP-AES		1	4	25.0	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EG035T: Total Mercury by FIMS		1	4	25.0	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EK059G: Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser		1	6	16.7	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EK061G: TKN as N By Discrete Analyser		1	10	10.0	4.8	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EK071G: Reactive Phosphorus as P-Soluble By Discrete Analyser		1	4	25.0	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EP066: Polychlorinated Biphenyls (PCB)		1	7	14.3	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EP068: Pesticides by GCMS		1	4	25.0	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EP071: TPH - Semivolatile Fraction		1	16	6.3	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EP075(SIM): PAH/Phenols (SIM)		1	8	12.5	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement
EP080: TPH Volatiles/BTEX		2	23	8.7	5.0	NEPM 1999 Schedule B(3) an	d ALSE QCS3 requirement

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703910	Page Number		: 6 of 8	(ALS)
Project	:	43217595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	:	13 Apr 2007	ALS Environmental

Interpretive Quality Control Report - Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged on the 'Quality Control Report'. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). Flagged outliers on control limits for inorganics tests may be within the NEPM specified data quality objective of recoveries in the range of 70 to 130%. Where this occurs, no corrective action is taken. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot.

Non-surrogates

ALS QC Lot	Matrix Type	Laboratory Sample ID	Client Sample ID	Analyte	Data	Limits	Comment				
Laboratory Duplicates (DUP)											
ED093T: Total Major Cations	SOIL	ES0703910-002	H41	Calcium	61.2 %	0-20 %	RPD exceeds LOR based limits				
EK071G: Reactive Phosphorous as P by discrete analyser	SOIL	ES0703985-001	Anonymous	Reactive Phosphorus as P	0.079		Analyte not determined in allocated original sample.				
Laboratory Control Samples (LCS)											
EP068A: Organochlorine Pesticides (OC)	SOIL	419263-002		gamma-BHC	122 %	59.8-118 %	Recovery greater than upper control limit				
EP068B: Organophosphorus Pesticides (OP)	SOIL	419263-002		Diazinon	111 %	64.9-111 %	Recovery greater than upper control limit				
Matrix Spikes (MS)		•		•							
EP068A: Organochlorine Pesticides (OC)	SOIL	ES0703910-001	H40	gamma-BHC	113 %	75.65-110. 44 %	Recovery greater than upper data quality objective				
EP068B: Organophosphorus Pesticides (OP)	SOIL	ES0703910-001	H40	Prothiofos	114 %	75.45-106. 05 %	Recovery greater than upper data quality objective				
EP080: BTEX	SOIL	ES0703916-001	Anonymous	Toluene	69.6 %	70-130 %	Recovery less than lower data quality objective				

1 For all matrices, no method blank result outliers occur.

Surrogates

ALS QC Lot	Matrix Type	Laboratory Sample ID	Client Sample ID	Analyte	Data	Limits	Comment
Surrogates							
EP080S: TPH(V)/BTEX Surrogates	SOIL	ES0703910-001	H40	Toluene-D8	80.2 %	81-117 %	Recovery less than lower data quality objective

Outliers : Analysis Holding Time

The following report highlights outliers within this 'Interpretive Quality Control Report - Analysis Holding Time'.

1 No holding time outliers occur.

Outliers : Frequency of Quality Control Samples

The following report highlights outliers within this 'Interpretive Quality Control Report - Frequency of Quality Control Samples'.

l No frequency outliers occur.

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0703910	Page Number	: 7 of 8	(ALS)
Project	:	43217595 Sediment Study	ALS Quote Reference	:	SY/019/07 V2	Issue Date	: 13 Apr 2007	ALS Environment

Method Reference Summary

The analytical procedures used by ALS Environmental are based on established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house procedure are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

Matrix Type: SEDIMENT

Method Reference Summary

Preparation Methods

EK061/EK067 : TKN/TP Digestion - APHA 21st ed., 4500 Norg- D; APHA 21st ed., 4500 P - H. Macro Kjeldahl digestion.

EN34 : 1:5 solid / water leach for soluble analytes - 10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.

EN69 : Hot Block Digest for metals in soils sediments and sludges - USEPA 200.2 Mod. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (1999) Schedule B(3) (Method 202)

ORG16: Methanolic Extraction of Soils for Purge and Trap - (USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.

ORG17A : Tumbler Extraction of Solids (Option A - Concentrating) - In-house, Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

ORG17B : Tumbler Extraction of Solids (Option B - Non-concentrating) - In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Analytical Methods

EA055-103 : Moisture Content - A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (1999) Schedule B(3) (Method 102)

ED093T : Major Cations by ICPAES - Total - APHA 21st ed., 3120; USEPA SW 846 - 6010 (ICPAES) Hydrochloric Acid digests of the soil are analyzed for major cations by ICPAES. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (1999) Schedule B(3)

EG005T: Total Metals by ICP-AES - (APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (1999) Schedule B(3)

EG020Z-T : Total Metals by ICP-MS - Suite Z - (APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

EG035T : Total Mercury by FIMS - AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3)

EK059G : Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser - APHA 21st ed., 4500 NO3- F. SEAL Method 2-018-1-L February 2003. Combined oxidised Nitrogen (NO2+NO3) in a water extract is determined by Cadmium Reduction, and direct colourimetry by SEAL.

EK061G : **TKN** as **N** By Discrete Analyser - APHA 21st ed., 4500-Norg-D Soil samples are digested using Kjeldahl digestion followed by determination by Seal Discrete Analyser.

Client Project		URS AUSTRALIA (NSW) PTY LTD 43217595 Sediment Study	Work Order ALS Quote Reference	÷	ES0703910 SY/019/07 V2	Page Number Issue Date		8 of 8 13 Apr 2007	
Појест	•		ALO QUOLE IVERERENCE	•	61/013/01 12	133de Date	•	1971012001	

Matrix Type: SEDIMENT

Analytical Methods

EK071G : Reactive Phosphorus as P-Soluble By Discrete Analyser - APHA 21st ed., 4500 P-F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by SEAL. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2

EP004 : Organic Matter - AS1289.4.4.4 - 1997., Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (1999) Schedule B(3) (Method 105)

EP066 : Polychlorinated Biphenyls (PCB) - (USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 504)

EP068 : Pesticides by GCMS - (USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (1999) Schedule B(3) (Method 504,505)

EP071 : TPH - Semivolatile Fraction - (USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (1999) Schedule B(3) (Method 506.1)

EP075(SIM) : **PAH/Phenols (SIM)** - (USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 502 and 507)

EP080 : TPH Volatiles/BTEX - (USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 501)

PSA-SOL : Particle Size Analysis (Solid) - Particle Size Analysis of solid matrices conducted by Subcontracting Laboratory

Method Reference Summary

ALS Environmental

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive report

Client Details	6		Laboratory De	etails
Client	:	URS AUSTRALIA (NSW) PTY LTD	Laboratory	Environmental Division Sydney
Contact	:	CARSTEN MATTHAI	Manager	: Victor Kedicioglu
Address	:	LEVEL 3, 116 MILLER STREET NORTH SYDNEY NSW AUSTRALIA 2060	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Project	:	43217595 Sediment Study	Quote number	: ES20070014
Order number	:	- Not provided -	Work order	ES0703910
C-O-C Number	:	- Not provided -		
Site	:	- Not provided -		
Sampler	:	CARSTEN MATTHAI		
E-mail	:	carsten_matthai@urscorp.com	E-mail	: Victor.Kedicioglu@alsenviro.com
Telephone	:	89255500	Telephone	: 61-2-8784 8555
Facsimile	:	89255555	Facsimile	: 61-2-8784 8500
Dates				
Date Samples Rec	eived	: 27 Mar 2007	SRA Issue Date	:
Scheduled Report	ing Da	ate : 3 Apr 2007	Client Requested Date	e : 3 Apr 2007
Delivery Deta	ails			
Mode of Delivery		: Carrier.	Temperature	: 5.8'C - Ice present
No. of coolers/box	es	: 2 HARD	No. of samples	- Received 8
Security Seal		: Intact.		- Analysed 8

Comments

1 Samples received in appropriately pretreated and preserved containers.

1 Sample(s) have been received within recommended holding times.

1 Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).

1 Please direct any turn around / technical queries to the laboratory contact designated above.

Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil

1 Analytical work for this work order will be conducted at ALSE Sydney.

1 Sample Disposal - Aqueous (14 days), Solid (90 days) from date of completion of work order.

When the sampling time is not supplied on the COC documentation, ALSE defaults the sampling time to that of the COC 'relinquishment' time (if supplied). If this also is not supplied, ALSE defaults the sampling time to the 'time of receipt at Laboratory'.

: This document contains privileged and confidential information intended only for the use of the addressee. If you are not the addressee, you are hereby notified that you must not disseminate, copy or take action of its contents. If you have received this document in error, please notify ALS immediately.

SAMPLE RECEIPT NOTIFICATION (SRN) - continued

Client	: URS AUSTRALIA (NSW) PTY LTD	Work Order	: ES0703910
Project	: 43217595 Sediment Study	ALS Quote Reference	: ES20070014

Project : 43217595 Sediment Study

Summary of Sample(s) / Container(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as moisture and preparation tasks, that form an implicit part of that package.

ALS Sample ID.	Client Sample ID - Sample Date				R	equested	Analysi	S			
		EA055-103 - SOIL Moisture Content	ED093T - SOIL Cations - Total	EG005T (solids) - SOIL Total Metals by ICP-AES	EG0202-T - SOIL Total Metals by ICPMS - Suite Z	EK059G (solids) - SOIL Nitrite plus Nitrate as N (NOx) - soluble by Discrete Analys	EK061G (Solids) - SOIL Total Kjeldahl Nitrogen as N (TKN) By Discrete Analyser	EK071G (solids) - SOIL Reactive Phosphorus as P By Discrete Analyser	EP004 (Carbon) - SOIL Total Organic Carbon (Calc.)	PSA-SOL - SOIL Particle Size Analysis (Solid)	S-03 - SOIL 13 Metals (NEPM Suite - incl. Digestion)
ES0703910-001	H40 - 26 Mar 2007		1	1		1	1	1	1	1]
ES0703910-002	H41 - 26 Mar 2007		1	1		1	1	1	1	1	1
ES0703910-003	H42 - 26 Mar 2007		1	1		1	1	1	1	1	1
ES0703910-004	QC1 - 26 Mar 2007		1	1		1	1	1	1	1	1
ES0703910-005	H3 - 26 Mar 2007	1			1						
ES0703910-006	H5 - 26 Mar 2007	1			1						
ES0703910-007	H7 - 26 Mar 2007	1			1						
ES0703910-008	QC2 - 26 Mar 2007]			1						
	Total(s) :	4	4	4	4	4	4	4	4	4	4

SAMPLE RECEIPT NOTIFICATION (SRN) - continued

Client	: URS AUSTRALIA (NSW) PTY LTD	Work Order	: ES0703910
Project	: 43217595 Sediment Study	ALS Quote Reference	: ES20070014

ALS Sample ID.	Client Sample ID - Sample Date				R	equested	l Analysi	s		
			S-07 - SOIL TPH/BTEX/PAH (SIM)	S-13 - SOIL OC/OP/PCB						
ES0703910-001	H40 - 26 Mar 2007		1	1						
ES0703910-002	H41 - 26 Mar 2007		1	1						
ES0703910-003	H42 - 26 Mar 2007		1	1						
ES0703910-004	QC1 - 26 Mar 2007		1	1						
ES0703910-005	H3 - 26 Mar 2007									
ES0703910-006	H5 - 26 Mar 2007									
ES0703910-007	H7 - 26 Mar 2007									
ES0703910-008	QC2 - 26 Mar 2007									
		Total(s) :	4	4						

Client: URS AUSTRALIA (NSW) PTY LTDProject: 43217595 Sediment Study

Requested Reports

1	ACCOUNTS PAYABLE - A4 - AU Tax Invoice	Email	sydney_accounts@urscorp.com
1	CARSTEN MATTHAI		
	 A4 - Certificate of Analysis - NEPM format 	Email	carsten_matthai@urscorp.com
	- Trigger - Subcontract Report	Email	carsten_matthai@urscorp.com
	 A4 - Interpretive Quality Control Report - NEPM format 	Email	carsten_matthai@urscorp.com
	 A4 - Quality Control Report - NEPM format 	Email	carsten_matthai@urscorp.com
	- ENMRG Export Format	Email	carsten_matthai@urscorp.com
	- A4 - Sample Receipt Notification - Comprehensive format	Email	carsten_matthai@urscorp.com
	 Chain of Custody Acknowledgement 	Email	carsten_matthai@urscorp.com
	- Invoice	Email	carsten_matthai@urscorp.com

Work Order

ALS Quote Reference

: ES0703910

: ES20070014

Sample Container(s) / Preservation Non-Compliance Log

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

1 No sample container / preservation non-compliance exist.

1/51 Secam Street, Mansfield QLD 4122 PO Box 2034 Mansfield DC QLD 4122 Phone:(07) 3343 3166 Fax:(07) 3849 4705 www.golder.com.au

TEST RESULTS

Client :	ALS Environmental Sydney
Project :	Delivered Samples
Batch No. :	ES0703910

 Job No. :
 077634002/5

 Date Received :
 29/03/2007

 Sampled by :
 Client

Percent Percent Percent Percent Sample Coarse to Med. Med. To Fine Sand Reg'n No. Sample ID Silt & Clay Gravel Sand (0.250 mm - 0.063 No. (+ 2 mm) (-0.063 mm) (2 mm - 0.250 mm) mm) L14174 H40 1 0 42 32 26 L14175 H41 2 77 0 8 15 L14176 H42 3 0 18 24 58 L14177 QC1 4 0 24 16 60

PARTICLE SIZE SUMMARY

Remarks :

Test Procedure : AS1289 3.6.1 Prepared by : NF

Checked by

SA

Page 1 of 1

1/51 Secam Street Mansfield Qld 4122 PO Box 2034 Mansfield DC Qld 4122 Ph: (07) 3343 3166 Fax: (07) 3343 4705 www.golder.com.au

PARTICLE SIZE DISTRIBUTION

Client :	ALS Environmental Sydney	Report No. :	R6509
Address :	277 Woodpark Road, Smithfield NSW	Job No. :	077634002/5
Project :	Delivered Samples	Reg'n No. :	L14174
Sample ID :	H40	Batch No. :	ES0703910 - 1
		Date Received :	29/03/07
		Sampled By :	Client

Sieve	D	100	Fine	Sand	М	edium S	and	Coarse	Sand		Fine Gravel	Me	dium Gravel	Coarse C	Gravel	Cob	bles
Size (mm)	Percent Passing				- + - - + - - + -				/			 - + - - + -					
150		90			-+-				1	- + -		-+-				i	
75		80			-+- -+-		K					- + -					
37.5												_ L _ _ L _ _ L _					
19.0		70				1										!	
9.5		Jen 60			- + -	<u> </u>											
4.75		Percentage Finer						+ +									
2.00	100.0	50 rcent								- +		-+-				 	
1.18	87.2	อ 6 40			1					- + -		-+-					
0.600	82.4									 				 	1	l l l	
0.425	80.8	30		7											1		
0.250	58.2	20			- + -	· ·									1		
0.150	28.9																
0.075	26.4	10			· - + -										1		
0.063	26.2	0			- + -			1		- +		- + -		<u> </u>	1		
			0.075	0.150	5	0.250	0.425	0.600	1.18	0	2.30		9.5	19.0	37.5	75	150
	~~								Par	tic	le Size (I	nm)					
Remarks	s :																
	Description	:	Claye	y S	AN) (S	C) d	ark gi	œy, w	ith	shell						
	cedure :		AS 12	289	3.6	.1				. I							
	by: NF	the National Ass		(T	4°		•	lCue	ecked	C D	y: ⊐f	۲					

1446 Authorised Signatory

1/51 Secam Street Mansfield Qld 4122 PO Box 2034 Mansfield DC Qld 4122 Ph : (07) 3343 3166 Fax : (07) 3343 4705 www.golder.com.au

PARTICLE SIZE DISTRIBUTION

Client :	ALS Environmental Sydney	Report No. :	R6509
Address :	277 Woodpark Road, Smithfield NSW	Job No. :	077634002/5
Project :	Delivered Samples	Reg'n No. :	L14175
Sample ID :	H41	Batch No. :	ES0703910 - 2
		Date Received :	29/03/07
		Sampled By :	Client

Sieve	_			Fine S	Sand	1	Mediu	ım Saı	nd	Coarse	Sand	F	Fine Gravel		Mediu	m Grave	el	Coarse (Gravel	Co	bbles
Size (mm)	Percent Passing		100		-+	- T - T - T - T		/													
150			90		-	/						- + + - - + + -		- +						· ·	
75			80		4	- +					+	L - L -		- 1						· [
37.5			70			- 4 - 4 - +		 			+					 				3	
19.0		<i>ب</i>						 				-1-1-1-								·	
9.5		Percentage Finer	60		_	- † - † - †				+	<u> </u>								<u> </u>		
4.75		intage	50			- + - +		 		 	<u> </u>	- - -		- 1					<u> </u>	· j	
2.00	100.0	Perce	Ē			- + - + - + - +				+		1 1 1 1		-+						· ·	
1.18	98.6		40		-	- + - +								- 1				====		-	
0.600	96.9 96.0		30		-	- + - + - +														· I · I	
0.425	90.0		20													 	 			· 	
0.150	82.4		20			- <u>1</u> - <u>1</u> - <u>1</u>															
0.075	78.1		10	·		- † - †				┇╼╼╼┌ ┫╾╴╴╴┌	+									·¦ -	
0.063	76.7		۰Ē		-	- + - +						F		- 1							
			0.063	0.075	0.150		0.250	0.425	00000	0.000	1.18	236	4 75	ř		9.5	10.0	2.0	37.5	75	150
											Part	icl	e Size (ı	mn	n)						
Remarks	•																				
laterial I	Descriptior	ו:	5	Silty C	LA	Y	(CI)	da	rk (grey, \	with s	on	ne sano	d							
est Pro	cedure: by: NF		1	AS 12	89	3.6	6.1				cked										

Authorities, Australia. The test(s) reported herein have I performed in accordance with its scope of registration. This document shall not be reproduced, except in full.

NATA 1446

N Jun 17/4/7 Authorised Signatory

Golder Form No. R06 PSD RL1 - 28/07/03

1/51 Secam Street Mansfield Qld 4122 PO Box 2034 Mansfield DC Qld 4122 Ph: (07) 3343 3166 Fax: (07) 3343 4705 www.golder.com.au

PARTICLE SIZE DISTRIBUTION

Client :	ALS Environmental Sydney	Report No. :	R6509
Address :	277 Woodpark Road, Smithfield NSW	Job No. :	077634002/5
Project :	Delivered Samples	Reg'n No. :	L14176
Sample ID :	H42	Batch No. :	ES0703910 - 3
		Date Received :	29/03/07
		Sampled By :	Client

SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Medium Sand Fine Gravel Medium Gravel Fine Sand Coarse Sand Coarse Gravel Cobbles Sieve 100 Percent Size Passing (mm)90 150 75 80 37.5 70 19.0 Percentage Finer 9.5 60 4.75 50 2.00 100.0 1.18 93.0 40 0.600 89.0 30 0.425 87.5 0.250 81.8 20 0.150 63.4 10 0.075 58.6 0.063 57.7 0 0.600 0.063 0.075 0.150 0.250 0.425 2.36 4 75 37.5 1.18 9.5 19.0 50 75 Particle Size (mm) Remarks : Material Description : Sandy CLAY (CI) dark grey, with shell Test Procedure : AS 1289 3.6.1 NF Prepared by : JAC Checked by : This Laboratory is accredited by the National Association of Testing ATA

Authorities, Australia. The test(s) reported herein have been performed in accordance with its scope of registration. This document shall not be reproduced, except in full.

1446

n Jun 17/4/7 Authorised Signatory

Golder Form No. R06 PSD RL1 - 28/07/03

1/51 Secam Street Mansfield Qld 4122 PO Box 2034 Mansfield DC Qld 4122 Ph : (07) 3343 3166 Fax : (07) 3343 4705 www.golder.com.au

PARTICLE SIZE DISTRIBUTION

Client :	ALS Environmental Sydney	Report No. :	R6509
Address :	277 Woodpark Road, Smithfield NSW	Job No. :	077634002/5
Project :	Delivered Samples	Reg'n No. :	L14177
Sample ID :	QC1	Batch No. :	ES0703910 - 4
		Date Received :	29/03/07
		Sampled By :	Client

Sieve			100		Fine San	d	Me	edium S	and	Coarse	Sand	F	ine Gravel	1	Mediu	m Gravel	Coars	e Gra	ivel	Cob	bles
Size (mm)	Percent Passing		100				+ - + - + -				/								 		
150			90				+ - + - + -				<u> </u>	+ + + + +							-		
75			80				1				<u> </u>								 		
37.5						-/	[-												\ \ \		
19.0			70	-		/															
9.5		iner	60				$\frac{1}{7}$ -	<u> </u>			<u> </u>							- 1	¦		
4.75		ige Fi				 -	т – т – т –	 		†	‡			 			1		' ' '		
2.00	100.0	Percentage Finer	50				+ - + -	 			1	+ -					 	- 1	i		
1.18	94.0	Per	40	-			 + -			++ ++		+ + + + + + + + + + + + + + + + + + + +		-+			1		 		
0.600	90.7			-		 -	+ + 	 		+	+			- +			 		 		
0.425	89.4		30				 												 		
0.250	83.9		20	-			$\frac{1}{1}$ -			+ +										' 	
0.150	65.9			-		†	$\frac{1}{1}$				 			 							
0.075	61.2		10	-			Τ - Τ - Τ -														
0.063	60.3		0			-	+ - + -			-	 	+ +					1			i	
			0.063		0.075	0.150		0.250	0.425	0.600	1.18	7 36	2.00 7 7 F		1	9.9	19.0	37.5		75	150
											Part	licl	e Size (mm	1)						
Remarks	3:				-													····			
	Descriptior	ו:		S	andy (CLA	٩Y	′ (CI)	dai	k grey	, with	I S	hell								
Test Pro	cedure :			A	S 1289	93	.6	.1		·											
Prepared	dby:MF									Che	cked	by	1: JA	r							

1446 Authorised Signatory Page 4 of 4.

					CHAIN OF CUSTODY FORM	*.						She	et 1	of 1								
THIS COLUMN								· .							/pe, Pre	servat	ive					
FOR LAB USE ONLY		FROM: 6 (AUSTR			DATE: 27-3-07	TO: ALS Smithfield		[-				and An	alysis entificati							
	ACN	000 691				277 Woodpark Rd					<u> </u>	1 .		ainerio	enuncau				1	1	T	Ť –
Job Code:		h Sydney				Smithfield 2164	Size ml		500 g	150												
43217595		el 3 116 M		reet			Type* Preserv ative	Glass	Plastic Ba	g Glass										-		<u> </u>
		8925 550	0		Fax: 8925 5555		Code													1.1	1	
Due Date:		ct No: 17595			Sampler(s): Carster/Matthai			ple X e 2	Ĕ													1.1.1
12-4-07	Proje	ct Manager			Signature(s):			URS V Cr, Cc, g, Al, F 6)/BTE 4, TOC 7'us (Ta	с. Grain Size (4 fractions: <0.063 mm 0.063 to 0.25 mm to 2 mm; >2 mm)										· ·			
				19-07 URS V2			4.1	9-07 9-07 6-03 8-03 95ph	ons: 0.25	O O		1.1										
Custody seal intact?	Rele	ased for	URS b	y:	Received for Laborato	ry by:		7-01 A-01 H (C PCB	nm; (q												
NO NO	Cars	ten Matth	ai		trank Ferraro	- ALS Sydney	, s	Per S As, E di, Pb g: TF S/OP, activ	e (41).25 i 1m)	Ë												1.1
Sample cold?	Date			Time:	, Date:	Time:	Analytes	Inalytes per SY- Metals - As, Ba, Xu, Mn, Ni, Pb, V Sr, Ca, Mg; TPH AHs, OC/OP/PC OX, Reactive F	n Siz 3 to (>2 n	Silver (Table										-		Ð
VER NO	21	-3-0	1 14		Frank Ferrano 27/03/07			Anal (Met Sr, C NOX	Grai 0.06 mm;	Sil						· .						PloH
Lab identification		Date	Time	Matrix	Sample Number	Estimated Level of Contamination	Total no	Tick required a	nalytes					•••								
(2(6-3-07		Sediment	H40	Low		X	x							1						x
2				Sediment	H41	Low		x	x				CO	NTF	AC	T \	NO	RK				x
$\overline{\mathbb{S}}$				Sediment	H42	Low		x	X				NO	. E	S0"	70	3910	\$				x
(L)				Sediment	QC1	Low		x	x		÷			[]	old	A	(CAC)	Hac	lfs			x
				Sediment	H3	Low				x		L	-AE		oiae		3000			1 2 7		X
6				Sediment	H5	Low				x			DAT	E:	27	103	107					x
\bigcirc		/		Sediment	H7	Low				x			SPL	ΙТ.								X
(8)	V	/		Sediment	QC2	Low				x										*****		X
					\mathbf{X}		1					·	*****							। इ.स.च.च.च.च.च.च.च.च.च.च.च.च.च.च.च.च.च.च.		
											-				-		aant		vicio	n		
														Ī	Envi	ronn ج	neni: Sydn	ar Di ev	VISIO	11		
		/										\backslash		Γ			ork C					1
		\checkmark											/		E				910)		
	_/										÷				C	30	// (/3:	770	/		
	<u>/</u>							-			/											
			1																			
			1	\mathbf{N}							19		- -									
															Tele	ohone	e:61	-2-878	34 855	5		
					/																	\mathbf{i}
^{Remarks:} No historical data av carsten_matthai@ut			ase se	end results	o Dr Carsten Matthai (Email:	TOTAL		4 (2 identical jars each)	4	4												
	' Con	tainer Typ	e and	Preservative served Vial; V	Codes: P = Neutral Plastic; N = Nitric Acid Pres S = Sulfuric		Preserv		Washed Ad	cid Rinse	d Jar;	S = Solv	ent Wa	shed Ac	id Rinse	d Glas	s Bottle	; VC =	J	l		
Courier Job No:	.,				sults to Carsten_Matthai@urscorp.co	om				NOT	FSA	NPLES N			DANCE	ROUS	1					
Counter JOD NO:				Send re					1	101		HAZAR										

ALS Environmental

CERTIFICATE OF ANALYSIS

Client	🗄 URS AUSTRALIA (NSW) PTY LTD	Laboratory	Environmental Division Sydney	Page	∴ 1 of 7
Contact	MR CARSTEN MATTHAI	Contact	ິ Victor Kedicioglu	Work Order	⁻ ES0706306
Address	: LEVEL 3, 116 MILLER STREET NORTH SYDNEY NSW AUSTRALIA 2060	Address	277-289 Woodpark Road Smithfield NSW Australia 2164		200700000
E-mail	☆ carsten_matthai@urscorp.com	E-mail	Victor.Kedicioglu@alsenviro.com		
Telephone	÷ 89255500	Telephone	<i>∴</i> 61-2-8784 8555		
Facsimile	÷ 89255555	Facsimile	<i>∶</i> 61-2-8784 8500		
Project	ž 43217595	Quote number	: SY/019/07 V2	Date received	ິ 14 May 2007
Order number	EBATCH OF ES0703904			Date issued	∑ 28 May 2007
C-O-C number	🗄 - Not provided -			No. of samples	- Received 18
Site	: - Not provided -				Analysed : 18

ALSE - Excellence in Analytical Testing

	NATA Accredited Laboratory 825		Ily signed by those names that appear on this report an oliance with procedures specified in 21 CFR Part 11.	ad are the authorised signatories. Electronic
NATA	This document is issued in	Signatory	Position	Department
NATA	accordance with NATA's accreditation reguirements.	Kim McCabe	Senior Inorganic Chemist	Inorganics - NATA 825 (818 - Brisbane)
	accreation requirements.	Kim McCabe	Senior Inorganic Chemist	Stafford Minerals - NATA 825 (818 -
\mathbf{V}				Brisbane)
WORLD RECOGNISED	Accredited for compliance with ISO/IEC 17025.	PHALAK INTHAKESONE	Organics Co-ordinator	Organics - NATA 825 (10911 - Sydney)

Page Number: 2 of 7Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0706306

Comments

This report for the ALSE reference ES0706306 supersedes any previous reports with this reference. Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Analytical Results for Samples Submitted
- 1 Surrogate Recovery Data

The analytical procedures used by ALS Environmental have been developed from established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

When moisture determination has been performed, results are reported on a dry weight basis. When a reported 'less than' result is higher than the LOR, this may be due to primary sample extracts/digestion dilution and/or insuffient sample amount for analysis. Surrogate Recovery Limits are static and based on USEPA SW846 or ALS-QWI/EN38 (in the absence of specified USEPA limits). Where LOR of reported result differ from standard LOR, this may be due to high moisture, reduced sample amount or matrix interference. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number, LOR = Limit of Reporting. * Indicates failed Surrogate Recoveries.

Specific comments for Work Order ES0706306

EP130,131A+B: Poor surrogate and matrix spike recovery due to sample heterogeneity and sample matrix effects. EP132: Poor matrix spike recovery due to sample heterogeneity. EP132: Poor duplicate precision due to sample heterogeneity.

Page Number: 3 of 7Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0706306

Applytical Paculta		Clien	t Sample ID :	H7	H8	H9	H10	H17
Analytical Results	Samp	ole Matrix Type	/ Description :	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample	Date / Time :	26 Mar 2007				
				15:00	15:00	15:00	15:00	15:00
		Laborator	y Sample ID :					
Analyte	CAS number	LOR	Units	ES0706306-001	ES0706306-002	ES0706306-003	ES0706306-004	ES0706306-005
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0 %		5.9	8.6	7.4	9.1	5.7
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		0.02 %		3.26	4.16	4.73	5.40	2.72

Page Number: 4 of 7Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0706306

Applytical Paculta		Client	Sample ID :	H18	H21	H22	H23	H24
Analytical Results	Samp	le Matrix Type	Description :	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample	Date / Time :	26 Mar 2007				
				15:00	15:00	15:00	15:00	15:00
		Laborator	y Sample ID :					
Analyte	CAS number	LOR	Units	ES0706306-006	ES0706306-007	ES0706306-008	ES0706306-009	ES0706306-010
EA055: Moisture Content					•			
Moisture Content (dried @ 103°C)		1.0 %		7.5	5.6	12.6	10.0	22.1
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		0.02 %		2.53	6.75	5.13	3.59	3.80

Page Number: 5 of 7Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0706306

Analytical Pasults		Clien	t Sample ID :	H25	H26	H28	H31	H37
Analytical Results	Samp	le Matrix Type	/ Description :	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample	Date / Time :	26 Mar 2007				
				15:00	15:00	15:00	15:00	15:00
		Laborator	y Sample ID :					
Analyte	CAS number	LOR	Units	ES0706306-011	ES0706306-012	ES0706306-013	ES0706306-014	ES0706306-015
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0 %		1.6	4.8	2.2	19.9	7.2
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		0.02 %		2.12	4.11	1.96	2.31	3.21

Page Number: 6 of 7Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0706306

Applytical Baculta		Clien	t Sample ID :	H38	QC3	QC4
Analytical Results	Samp	ole Matrix Type	•		SOIL	SOIL
		Sample	Date / Time :	26 Mar 2007 15:00	26 Mar 2007 15:00	26 Mar 2007 15:00
		Laborator	y Sample ID :			
Analyte	CAS number	LOR	Units	ES0706306-016	ES0706306-017	ES0706306-018
EA055: Moisture Content						
Moisture Content (dried @ 103°C)		1.0 %		6.6	11.2	33.2
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		0.02 %		2.59	2.34	4.16

Page Number: 7 of 7Client: URS AUSTRALIA (NSW) PTY LTDWork Order: ES0706306

Surrogate Control Limits

1 No surrogates present on this report.

ALS Environmental

QUALITY CONTROL REPORT

Client	: URS AUSTRALIA (NSW) PTY LTD	Laboratory	: Environmental Division Sydney	Page	: 1 of 4
Contact	: CARSTEN MATTHAI	Contact	: Victor Kedicioglu		
Address	: LEVEL 3, 116 MILLER STREET NORTH SYDNEY NSW AUSTRALIA 2060	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164	Work order	ES0706306
				Amendment No.	:
Project	: 43217595	Quote number	: SY/019/07 V2	Date received	: 14 May 2007
Order number	: REBATCH OF ES0703904			Date issued	: 28 May 2007
C-O-C number	- Not provided -				
Site	: - Not provided -				
E-mail	: carsten_matthai@urscorp.com	E-mail	: Victor.Kedicioglu@alsenviro.com	No. of samples	
Telephone	: 89255500	Telephone	: 61-2-8784 8555	Received	: 18
Facsimile	: 89255555	Facsimile	: 61-2-8784 8500	Analysed	: 18

This final report for the ALSE work order reference ES0706306 supersedes any previous reports with this reference.

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Laboratory Duplicates (DUP); Relative Percentage Difference (RPD) and Acceptance Limits
- 1 Method Blank (MB) and Laboratory Control Samples (LCS); Recovery and Acceptance Limits
- 1 Matrix Spikes (MS); Recovery and Acceptance Limits

Work order specific comments

EP132: Poor matrix spike recovery due to sample heterogeneity.

EP132: Poor duplicate precision due to sample heterogeneity.

EP130,131A+B: Poor surrogate and matrix spike recovery due to sample heterogeneity and sample matrix effects.

Kim McCabe

PHALAK INTHAKESONE

ALSE - Excellence in Analytical Testing

This document is issued in

NATA Accredited Laboratory - 825

accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IED 17025

signing has been carried out in compliance with procedures specified in 21 CF	1 5
Signatory	Department
Kim McCabe	Inorganics - NATA 825 (818 - Brisbane)

Inorganics - NATA 825 (818 - Brisbane) Stafford Minerals - NATA 825 (818 - Brisbane) Organics - NATA 825 (10911 - Sydney)

that appear on this report and are the outborized simulation. Flastrania

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0706306	Page Number	:	2 of 4	(ALS)
Project	:	43217595	ALS Quote Reference	:	SY/019/07 V2	Issue Date	:	28 May 2007	ALS Environmental

Quality Control Report - Laboratory Duplicates (DUP)

The quality control term **Laboratory Duplicate** refers to an intralaboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations:* **LOR** = *Limit of Reporting,* **RPD** = *Relative Percent Difference.* * Indicates failed QC. The permitted ranges for the RPD of Laboratory Duplicates (relative percent deviation) are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting:- Result < 10 times LOR, no limit - Result between 10 and 20 times LOR, 0% - 50% - Result > 20 times LOR, 0% - 20%

Matrix Type: SOIL

Laboratory Sample ID Client Sample ID Analyte name LOR **Original Result** Duplicate Result RPD EA055: Moisture Content EA055: Moisture Content - (QC Lot: 409839) % % % H7 ES0706306-001 Moisture Content (dried @ 103°C) 1.0 % 5.9 5.2 11.9 H24 22.1 3.8 ES0706306-010 Moisture Content (dried @ 103°C) 1.0 % 22.9 EP005: Total Organic Carbon (TOC) EP005: Total Organic Carbon (TOC) - (QC Lot: 417590) % % % ES0706306-010 H24 **Total Organic Carbon** 0.02 % 3.80 3.84 1.0 ES0706306-018 QC4 **Total Organic Carbon** 0.02 % 4.16 4.19 0.7

Laboratory Duplicates (DUP) Report

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0706306	Page Number	:	3 of 4	(ALS)
Project	:	43217595	ALS Quote Reference	:	SY/019/07 V2	Issue Date	:	28 May 2007	ALS Environmental

Quality Control Report - Method Blank (MB) and Laboratory Control Samples (LCS)

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of actual laboratory data. Flagged outliers on control limits for inorganics tests may be within the NEPM specified data quality objective of recoveries in the range of 70 to 130%. Where this occurs, no corrective action is taken. Abbreviations: LOR = Limit of reporting.

Matrix Type: SOIL

Method Blank (MB) and Laboratory Control Samples (LCS) Report

		Method blank	Actual Posults		Recovery Limits		
		result	Spike concentration	Spike Recovery	Dynamic Re	covery Limits	
Analyte name	LOR			LCS	Low	High	
EP005: Total Organic Carbon (TOC)							
EP005: Total Organic Carbon (TOC) - (QC Lot: 417590)		%	%	%	%	%	
Total Organic Carbon	0.02 %		100	105	70	130	
	0.02 %	<0.02					

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0706306	Page Number	:	4 of 4	(ALS)
Project	:	43217595	ALS Quote Reference	:	SY/019/07 V2	Issue Date	:	28 May 2007	ALS Environmental

Quality Control Report - Matrix Spikes (MS)

The quality control term **Matrix Spike (MS)** refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQO's). 'Ideal' recovery ranges stated may be waived in the event of sample matrix interferences. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations: LOR = Limit of Reporting, RPD = Relative Percent Difference.* * Indicates failed QC

Matrix Spike (MS) Report

					Actual			ery Limits
Analyte name	Laboratory Sample ID	Client Sample ID	LOR	Spike Concentration	Sample Result	Spike Recovery MS	Low	: Limits High
- (QC Lot:)						%	%	%

1 No Matrix Spike (MS) carried out on this Work Order.

ALS Environmental

INTERPRETIVE QUALITY CONTROL REPORT

Client	:	URS AUSTRALIA (NSW) PTY LTD	Laboratory	:	Environmental Division Sydney	Page	:	1 of 8
Contact	:	CARSTEN MATTHAI	Contact	:	Victor Kedicioglu			
Address	:	LEVEL 3, 116 MILLER STREET NORTH SYDNEY NSW AUSTRALIA 2060	Address	:	277-289 Woodpark Road Smithfield NSW Australia 2164	Work order	:	ES0706306
						Amendment No.	:	
Project	:	43217595	Quote number	:	SY/019/07 V2	Date received	:	14 May 2007
Order number	:	REBATCH OF ES0703904				Date issued	:	28 May 2007
C-O-C number	:	- Not provided -						
Site	:	- Not provided -						
E-mail	:	carsten_matthai@urscorp.com	E-mail	:	Victor.Kedicioglu@alsenviro.com	No. of samples		
Telephone	:	89255500	Telephone	:	61-2-8784 8555	Received	:	18
Facsimile	:	89255555	Facsimile	:	61-2-8784 8500	Analysed	:	18

This Interpretive Quality Control Report was issued on 28 May 2007 for the ALS work order reference ES0706306 and supersedes any previous reports with this reference. This report contains the following information:

1 Analysis Holding Time Compliance

1 Quality Control Type Frequency Compliance

1 Summary of all Quality Control Outliers

1 Brief Method Summaries

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0706306	Page Number	: 2 of 8	(ALS)
Project	:	43217595	ALS Quote Reference	:	SY/019/07 V2	Issue Date	: 28 May 2007	ALS Environmental

Interpretive Quality Control Report - Analysis Holding Time

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the sample aliquot was taken. Elapsed time to analysis represents time from sampling where no extraction / digestion is involved or time from extraction / digestion where this is present. For composite samples, sampling date/time is taken as that of the oldest sample contributing to that composite. Sample date/time for laboratory produced leaches are taken from the completion date/time of the leaching process. Outliers for holding time are based on USEPA SW846, APHA, AS and NEPM (1999). Failed outliers, refer to the 'Summary of Outliers'.

Matrix Type: SOIL

Method Date Sampled Extraction / Preparation Analysis Date extracted Due for extraction Pass? Date analysed Due for analysis Container / Client Sample ID(s) Pass? EA055-103: Moisture Content Soil Glass Jar - Unpreserved H8. H7, 26 Mar 2007 16 May 2007 2 Apr 2007 Fail by 44 days ------------H9. H10. H17. H18. H21. H22. H23 H24. H25 H26. H28. H31. H37, H38. QC3, QC4 EP005: Total Organic Carbon Snap Lock Bag H7. H8. 26 Mar 2007 25 May 2007 23 Apr 2007 Fail by 32 day 25 May 2007 23 Apr 2007 Fail by 32 days H10. H9, H17, H18, H21. H22. H23. H24. H25. H26, H28 H31. H37, H38. QC3 QC4 EP130: Organophosphorus Pesticides (Ultra-trace) Soil Glass Jar - Unpreserved H7, H8, 9 Apr 2007 Fail by 37 day 25 Jun 2007 26 Mar 2007 16 May 2007 18 May 2007 Pass H9. H10. H17, H18, H21, H22, H23. H24. H25, H26, H28, H31, H37. H38. QC3, QC4 EP131A: Organochlorine Pesticides (Ultra-trace)

Analysis Holding Time and Preservation

	ALS
LS	Environmental

Client :	URS AUSTRALIA (NSW) PTY LTD	Work Order : E	ES0706306		Page N	umber : 3 of	8		
Project :	43217595	ALS Quote Reference : S	SY/019/07 V2		Issue D	ate : 28 M	<i>l</i> lay 2007	ALS Enu	dronmenta
Matrix Type: SO	IL						Analy	sis Holding Time	
Method			Date Sampled	E	traction / Preparatio	n		Analysis	
Container / Clien	t Sample ID(s)			Date extracted	Due for extraction	Pass?	Date analysed	Due for analysis	Pass?
EP131A: Organo	ochlorine Pesticides (Ultra-trace) - continued								
Soil Glass Jar									
H7,	Н8,		26 Mar 2007	16 May 2007	9 Apr 2007	Fail by 37 day	18 May 2007	25 Jun 2007	Pass
H9,	H10,						,		
H17,	H18,								
H21,	H22,								
H23,	H24,								
H25,	H26,								
H28,	H31,								
H37,	H38,								
QC3,	QC4								
EP131B: PCB's	(Ultra-trace)			•	1	ł			
Soil Glass Jar	- Unpreserved								
H7,	H8,		26 Mar 2007	16 May 2007	9 Apr 2007	Fail by 37 day	18 May 2007	25 Jun 2007	Pass
H9,	H10,								
H17,	H18,								
H21,	H22,								
H23,	H24,								
H25,	H26,								
H28,	H31,								
H37,	H38,								
QC3,	QC4								
EP132: Semivol	atile Compounds by GCMS(SIM - Ultra-trace)			•	1	ł			
Soil Glass Jar	- Unpreserved								
H7,	Н8,		26 Mar 2007	16 May 2007	9 Apr 2007	Fail by 37 day	18 May 2007	25 Jun 2007	Pass
H9,	H10,								
H17,	H18,								
H21,	H22,								
H23,	H24,								
H25,	H26,								
H28,	H31,								
H37,	Н38,								
QC3,	QC4								

Interpretive Quality Control Report - Frequency of Quality Control Samples

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which this work order was processed. Actual rate should be greater than or equal to the expected rate.

Matrix Type: SOIL					Frequency of Quality Control Sample
Quality Control Sample Type	Co	ount	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	1
Laboratory Duplicates (DUP)					
EA055-103: Moisture Content	2	18	11.1	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP005: Total Organic Carbon	2	18	11.1	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP130: Organophosphorus Pesticides (Ultra-trace)	2	18	11.1	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131A: Organochlorine Pesticides (Ultra-trace)	2	18	11.1	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131B: PCB's (Ultra-trace)	2	18	11.1	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP132: Semivolatile Compounds by GCMS(SIM - Ultra-trace)	2	18	11.1	10.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
Laboratory Control Samples (LCS)					
EP005: Total Organic Carbon	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP130: Organophosphorus Pesticides (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131A: Organochlorine Pesticides (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131B: PCB's (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP132: Semivolatile Compounds by GCMS(SIM - Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
Method Blanks (MB)					
EP005: Total Organic Carbon	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP130: Organophosphorus Pesticides (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131A: Organochlorine Pesticides (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131B: PCB's (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP132: Semivolatile Compounds by GCMS(SIM - Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
Matrix Spikes (MS)					
EP130: Organophosphorus Pesticides (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131A: Organochlorine Pesticides (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP131B: PCB's (Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement
EP132: Semivolatile Compounds by GCMS(SIM - Ultra-trace)	1	18	5.6	5.0	NEPM 1999 Schedule B(3) and ALSE QCS3 requirement

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0706306	Page Number	: 5 of 8	(ALS)
Project	:	43217595	ALS Quote Reference	:	SY/019/07 V2	Issue Date	: 28 May 2007	ALS Environmenta

Interpretive Quality Control Report - Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged on the 'Quality Control Report'. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). Flagged outliers on control limits for inorganics tests may be within the NEPM specified data quality objective of recoveries in the range of 70 to 130%. Where this occurs, no corrective action is taken. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot.

Non-surrogates

- 1 For all matrices, no RPD recovery outliers occur for the duplicate analysis.
- l For all matrices, no method blank result outliers occur.
- l For all matrices, no laboratory spike recoveries breaches occur.
- l For all matrices, no matrix spike recoveries breaches occur.

Surrogates

1 For all matrices, no surrogate recovery outliers occur.

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0706306	Page Number	:	6 of 8	(ALS)
Project	:	43217595	ALS Quote Reference	:	SY/019/07 V2	Issue Date	:	28 May 2007	ALS Environmental

Outliers : Analysis Holding Time

The following report highlights outliers within this 'Interpretive Quality Control Report - Analysis Holding Time'.

Method			E	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Pass?	Date analysed	Due for analysis	Pass?	
EA055-103: Moisture Content									
Soil Glass Jar - Unpreserved									
H7,	Н8,	26 Mar 2007				16 May 2007	2 Apr 2007	Fail by 44 days	
Н9,	H10,								
H17,	H18,								
H21,	H22,								
H23,	H24,								
H25,	H26,								
H28,	H31,								
H37,	H38,								
QC3,	QC4								
EP005: Total Organic Carbon		•				•		•	
Snap Lock Bag									
H7,	Н8,	26 Mar 2007	25 May 2007	23 Apr 2007	Fail by 32 day	25 May 2007	23 Apr 2007	Fail by 32 days	
Н9,	H10,		-			-			
H17,	H18,								
H21,	H22,								
H23,	H24,								
H25,	H26,								
H28,	H31,								
H37,	H38,								
QC3,	QC4								
EP130: Organophosphorus Pest	ticides (Ultra-trace)	·							
Soil Glass Jar - Unpreserved									
H7,	Н8,	26 Mar 2007	16 May 2007	9 Apr 2007	Fail by 37 day	18 May 2007	25 Jun 2007	Pass	
H9,	H10,								
H17,	H18,								
H21,	H22,								
H23,	H24,								
H25,	H26,								
H28,	H31,								
H37,	H38,								
QC3,	QC4								

Client :	URS AUSTRALIA (NSW) PTY LTD	Work Order :	ES0706306		Page N	Number : 7 of	8		
Project :	43217595	ALS Quote Reference :	SY/019/07 V2		Issue D	Date : 28 M	May 2007	ALS En	dronmonta
Method			Date Sampled	E	traction / Preparation	on		Analysis	
Container / Clie	ent Sample ID(s)			Date extracted	Due for extraction	Pass?	Date analysed	Due for analysis	Pass?
EP131A: Orga	anochlorine Pesticides (Ultra-trace)								
Soil Glass Ja	ar - Unpreserved								
H7,	Н8,		26 Mar 2007	16 May 2007	9 Apr 2007	Fail by 37 day	18 May 2007	25 Jun 2007	Pass
H9,	H10,								ľ
H17,	H18,								ľ
H21,	H22,								ľ
H23,	H24,								l
H25,	H26,								ľ
H28,	H31,								ľ
H37,	H38,								ľ
QC3,	QC4								
EP131B: PCB	's (Ultra-trace)								
Soil Glass Ja	ar - Unpreserved								
H7,	H8,		26 Mar 2007	16 May 2007	9 Apr 2007	Fail by 37 day	18 May 2007	25 Jun 2007	Pass
H9,	H10,			-					ľ
H17,	H18,								l
H21,	H22,								ľ
H23,	H24,								ľ
H25,	H26,								ľ
H28,	H31,								ľ
H37,	H38,								l
QC3,	QC4								1
EP132: Semiv	volatile Compounds by GCMS(SIM - Ultra-trace)								
Soil Glass Ja	ar - Unpreserved								ľ
H7,	Н8,		26 Mar 2007	16 May 2007	9 Apr 2007	Fail by 37 day	18 May 2007	25 Jun 2007	Pass
H9,	H10,								l
H17,	H18,								l
H21,	H22,								l
H23,	H24,								l
H25,	H26,								
H28,	H31,								
H37,	H38,								l
QC3,	QC4								

Outliers : Frequency of Quality Control Samples

The following report highlights outliers within this 'Interpretive Quality Control Report - Frequency of Quality Control Samples'.

l No frequency outliers occur.

Client	:	URS AUSTRALIA (NSW) PTY LTD	Work Order	:	ES0706306	Page Number	: 8 of 8	(ALS)
Project	:	43217595	ALS Quote Reference	:	SY/019/07 V2	Issue Date	: 28 May 2007	ALS Environmental

Method Reference Summary

The analytical procedures used by ALS Environmental are based on established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house procedure are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

Matrix Type: SOIL

Preparation Methods

Method Reference Summary

GEO30 : Dry and Pulverise (up to 100g) -

ORG17A-AC : Tumbler Extraction of Solids/ Acetylation - In-house, Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to 1 mL with exchange into cyclohexane. Phenolic compounds are reacted with acetic anhydride to yield phenyl acetates suitable for ultra-trace analysis.

ORG17A-UTP : Tumbler Extraction of Solids/ Sample Cleanup - In-house, Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. Samples are extracted, concentrated (by KD) and exchanged into an appropriate solvent for GPC and florisil cleanup as required.

Analytical Methods

EA055-103 : Moisture Content - A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (1999) Schedule B(3) (Method 102)

EP005 : Total Organic Carbon - In-house. Dried and pulverised sample is reacted with acid to remove inorganic Carbonates, then combusted in a LECO furnace in the presence of strong oxidants / catalysts. The evolved (Organic) Carbon (as CO2) is automatically measured by infra-red detector.

Frank Ferraro ALS Sydney 14/05/07 13:30

Fadi Soro

From: Sent: To: Cc: Subject: Victor Kedicioglu Monday, 14 May 2007 1:17 PM Fadi Soro; Kerry Stefanovic Nanthini Coilparampil; Edwandy Fadjar; Phalak Inthakesone; Scott Wythe Re-Batch ES0703904

Fadi,

Could you please re-batch this entire work order for all previously requested analysis, except for TPH & TPH/BTEX.

I've got the samples in my office.

Thanks,

Victor Kedicioglu

Laboratory Manager

ALS Laboratory Group

Environmental Division Sydney, Australia Phone: + 61 2 8784 8555

Fax: + 61 2 8784 8500 www.alsglobal.com <file:///C:\Documents%20and%20Settings\victor.kedicioglu\Application%20Data

\Microsoft\Signatures\www.alsglobal.com>

O H7
D H8
B HQ
M HIO
& HIT
K HIS
TH21
(B) H22
(a) H23
(1) H24
\bigvee
(i) H25
(J) H26
(13) H28
(4) H31
(H37
(16) H38
(D) QC3
(18) QC4
0.000

Environmental Division

Telephone : 61-2-8784 8555

Australian Government

National Measurement Institute

REPORT OF ANALYSIS

Page: 1 of 4

							ruge. ror 4
-				-			No. RN615333
Client	: URS AU					: URS04/070	
	LEVEL 3			-	2uote No.	: QT-00782	
	116 MIL				order No.	:	
	NORTH	SYDNEY I	VSW 2060		ate Sampled		
				C	ate Received	: 27-MAR-2	007
Attention	: CARSTE	N MATTH	AI	S	ampled By	: CLIENT	
Project Name	:						
Your Client Serv	rices Manag	ger : BRI	AN WOODW	ARD P	hone	: (02) 9449	0151
Lab Reg No.	S	ample Ref		Sample Des	cription		
N07/011897	Н			SEDIMENT .	JOB 4321759	95	
N07/011898	Н	31		SEDIMENT .	JOB 4321759	95	
N07/011899	Н	37		SEDIMENT .	JOB 4321759	95	
N07/011900	Н	38		SEDIMENT .	JOB 4321759	95	
Lab Reg No.			N07/011897	N07/011898	N07/011899	N07/011900	
Sample Reference			H9	H31	H37	H38	
	U	nits					Method
Herbicides							
Diuron	m	ig/kg	< 0.1	< 0.1	< 0.1	< 0.1	NR47
Miscellaneous							
Organic Investigation	n		See comment	See comment	See comment	See comment	NGCMS_1130
Fungicides							
Chlorothalonil	m	ig/kg	< 0.1	< 0.1	< 0.1	< 0.1	NR47
Dichlofluanid	m	ig/kg	< 0.1	< 0.1	< 0.1	< 0.1	NR47
Dates							
Date extracted			28-MAR-2007	28-MAR-2007	28-MAR-2007	28-MAR-2007	
Date analysed			14-MAY-2007	14-MAY-2007	14-MAY-2007	14-MAY-2007	

N07/011897

to

N07/011901:

Irgarol was not detected in Samples N07/011897 - N07/011901 where the Limit of Reporting is < 0.1 mg/kg.

Luke Baker, Analyst Organics - NSW

15-MAY-2007

1 Suakin Street, Pymble NSW 2073 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

REPORT OF ANALYSIS

Page: 2 of 4 Report No. RN615333

					Report	NO. RINO 15555
Lab Reg No.		N07/011897	N07/011898	N07/011899	N07/011900	
Sample Reference		Н9	H31	H37	H38	
	Units					Method
Trace Elements			<u>.</u>	<u>.</u>		
Total Solids	%	24.9	37.9	36.2	41.2	NT2_49

 \geq ----

Jim Huang, Analyst Inorganics - NSW

15-MAY-2007

1 Suakin Street, Pymble NSW 2073 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

REPORT OF ANALYSIS

			Page: 3 of 4
			Report No. RN615333
Client	: URS AUST P/L	Job No.	: URS04/070327
	LEVEL 3	Quote No.	: QT-00782
	116 MILLER ST	Order No.	:
	NORTH SYDNEY NSW 2060	Date Sampled	: 26-MAR-2007
		Date Received	: 27-MAR-2007
Attention	: CARSTEN MATTHAI	Sampled By	: CLIENT
Project Name	:		
Your Client Ser	vices Manager : BRIAN WOODWARD	Phone	: (02) 94490151
	-		

Lab Reg No.	Sample Ref	Sample Description	
N07/011901	QC5	SEDIMENT JOB 43217595	

Lab Reg No.		N07/011901	
Sample Reference		QC5	
	Units		Method
Herbicides			
Diuron	mg/kg	< 0.1	NR47
Miscellaneous			
Organic Investigation		See comment	NGCMS_1130
Fungicides			
Chlorothalonil	mg/kg	< 0.1	NR47
Dichlofluanid	mg/kg	< 0.1	NR47
Dates			
Date extracted		28-MAR-2007	
Date analysed		14-MAY-2007	

Luke Baker, Analyst Organics - NSW

15-MAY-2007

Lab Reg No.		N07/011901		
Sample Reference		QC5		
	Units			Method
Trace Elements				
Total Solids	%	25.3		NT2_49

Jim Huang, Analyst Inorganics - NSW

15-MAY-2007

1 Suakin Street, Pymble NSW 2073 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

National Measurement Institute

REPORT OF ANALYSIS

Page: 4 of 4 Report No. RN615333

All results are expressed on a dry weight basis.

Results relate only to the sample(s) tested.This Report supersedes reports: RN608203RN615294

RN615329

1 Suakin Street, Pymble NSW 2073 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 1653 www.measurement.gov.au

Australian Government

National Measurement Institute

QUALITY ASSURANCE REPORT

Client:

URS AUST P/L o: URS04/070327

NMI QA Report No:

Sample Matrix: Soil

Analyte	Method	LOR	LOR Blank	Sample Duplicates		s	Rec	overies
				Sample	Duplicate	RPD	LCS	Matrix Spike
		mg/kg	mg/kg	mg/kg	mg/kg	%	%	%
Organics Section								
Diuron	NR47	0.1	<0.1	NA	NA	NA	130	NA
Chlorothaloni	NR47	0.1	<0.1	NA	NA	NA	85	NA
Dichlofluanid	NR47	0.1	<0.1	NA	NA	NA	99	NA
Irgarol	NR47	0.1	<0.1	NA	NA	NA	77	NA

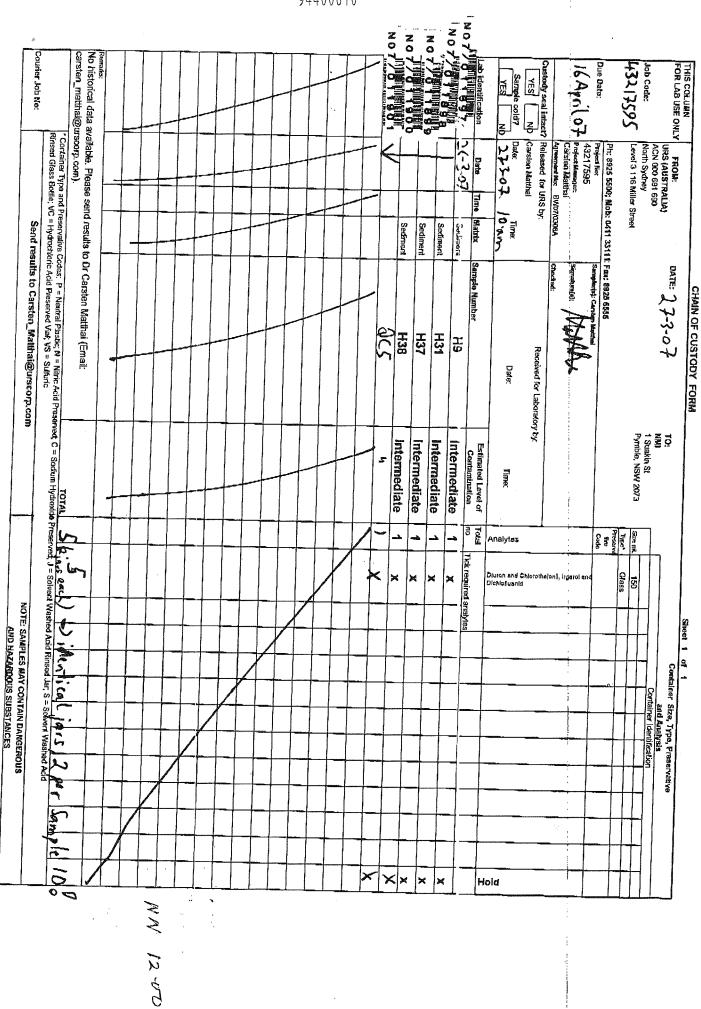
Results expressed in percentage (%) or mg/kg wherever appropriat

Acceptable Spike recovery is 50-150%

Acceptable RPDs on spikes and duplicates is 40%

'NA ' = Not Applicable

RPD= Relative Percentage Difference


This report shall not be reproduced except in ful

Signed:

Date:

Danny Slee Organics Manager, NMI-Pymble 14/05/2007

27-MAR-2007 TUE 1	3:06 NMI NSW SAMPLE PREP ▲	FAX NO. 94400610	P. 01
	Austraum Guvernment	DATE RECEIVID.	23. S. TAXMANNA
	National Measurement Institute		a provision FILE NO more a provision
22 224 V		OOGUMENT Re	C-Matter
			LATONIO'
		IPT NOTIFICATION	
COMPANY:	UR S		
ATTENTION:			
DATE/TIME:	Mathai FAX No: 100 27/3	0.2.892	5555
CLIENT JOB / PRO	JECT Name / Number		
SAMPLE NO:		******	
	Incomplete or unclear information		
	will delay the start of	of analytical work.	ired tests
Samples were a	SAMPLE		in the second
Samples were recei	12.W ON data	13	
Sampling Date docu	mented on COC? Yes No	-	
Samples received: f	rozen Cool (ice packs)		
9	DOCUMENTS	oom temperature	
Complete documenta	DOCUMENTS		
No documente a	tion received for all samples.	I	1
	ed. Please advise us quickly of you	ur requiremente	
NMI Quotation Numb	per included: Yes 🗌 No]
COMMENTS			
			01/
		igned:	
Contact our Sample Mar	ENQUIRIES	_	HN.
Please direct turparaus it	ENQUIRIES bering, damage, documentation etco beckering, damage, documentation etco	or fax (02) 9440 0610 reg c.	arding sample
	" recrimical enquiries to our Custom	Services Team Brian Way	•
L Sude a control of the second second	MISECTION I.SUISAMPLEPREPISRN1 ver5.doc	WOO	
A SUAKIN St (PO Box 385) Pyn	nble NSW 207.3 Tel: +61 2 9449 0111 Fax: +61 2 9	449 1653	Version #5 Created on 25/05/05
	tional Measureme		ABN: 51 835 430 479
	- it casureme	nt Institute	
	1		

27-MAR-2007 TUE 13:06

FAX NO. 94400610

1

P. 02

Appendices

Appendix F - Data Validation

URS			DATA VALIDATION SUMMARY
			a validation assesses each analyte in terms of all the data validation ples and only the exceedances and outliers are reported in this form
Project Name:	Hornsby Shire Council Sediment and Antifoul Study	Project/Task Number:	43217595
Analytical Laboratory:	Stage 2 ALS	Batch/Ref. Number(s):	ES0703904
Date Sampled:	26/03/2007	Sample Type:	Sediment
Sample Handling, Receipt and	Holding Times	Yes/No	Comments
COC completed adequately Samples received intact and c	chilled	Yes Yes	Yes Intact 11C ice present
Samples analysed within appro times per analytical methods.		Yes	
# of Primary Samples	# of QAQC Samples	# of Duplicate Samples	# of Triplicate Samples
16	0	2	0
Blanks			
Method Blank (MB), Rinsate Type	Blank (RB), Trip Blank (TB), Field Blank (FB) Commen	te
Туре		Commen	15
Laboratory Control Samples	(1 ()		
Analyte			
Matrix Spike (MS)			
Analyte		Commen	ts
Trip Spike /Control Trip Spil	ke		
Analyte n/a	% R		Comments
11/a			
Duplicates	1		
Laboratory Duplicates		Commen	ts
		••••	
Intra-Laboratory Duplicates		Commen	ts
QC5/H27			
Inter-Laboratory Duplicates		Commen	ts
N/A			
N/A			
N/A Surrogate Monitoring Comp	ound Analyses		
	ound Analyses		
	ound Analyses	Commen	ts
Surrogate Monitoring Comp	ound Analyses	Commen	ts
Surrogate Monitoring Comp	ound Analyses		ts
Surrogate Monitoring Comp	ound Analyses	Commen Overall Comments	ts
Surrogate Monitoring Comp	ound Analyses		ts
Surrogate Monitoring Comp	ound Analyses		ts
Surrogate Monitoring Comp	ound Analyses		ts
Surrogate Monitoring Comp	ound Analyses		ts

Performed By: Date: Reviewed By: Date:

URS			DATA VALIDATION SUMMARY
ULS			a validation assesses each analyte in terms of all the data validation
			oles and only the exceedances and outliers are reported in this form
Project Name:	Hornsby Shire Council Sediment and Antifoul Study	Project/Task Number:	43217595
Analytical Laboratory:	Stage 2 ALS	Batch/Ref. Number(s):	ES0703908
Date Sampled:	16/03/2007	Sample Type:	Sediment
Sample Handling, Receipt and	I Holding Times	Yes/No	Comments
COC completed adequately		Yes	
Samples received intact and		Yes	Received 6.2C- ice present
Samples analysed within appro times per analytical methods.		Yes	
# of Primary Samples	# of QAQC Samples	# of Duplicate Samples	# of Triplicate Samples
16	0	2	0
Blanks			
Method Blank (MB), Rinsate	e Blank (RB) Trin Blank (T	B) Field Blank (FB)	
Type		Comme	ents
MB		All blank results	
		/ 5.0	
Laboratory Control Sample	es (LCS)		
Analyte			
		All recoveries in the LC	S were acceptable
Matrix Spike (MS)			
Analyte		Comme	
		All spike recoveries were v	
Trip Spike /Control Trip Spi			
Analyte	% R		Comments
n/a			
Duplicates			
Duplicates			
Laboratory Duplicates		Commo	nto
Laboratory Duplicates Analyte		Comme	ints
Analyte	ΔΙΙ	RPDS were acceptable for the	laboratory duplicate analysis
		The between acceptable for the	laboratory duplicate analysis.
later Lakansten Deutinater		Commo	
Intra-Laboratory Duplicates	<u> </u>	Comme	ints
H7/QC2		All RPDs acceptable or result	s below Limit of Reporting
,			
	-		
Inter-Laboratory Duplicates	8	Comme	ents
N/A			
Surrogate Monitoring Com	pound Analyses		
Analyte		Comme	nts
		Surrogate recoveries within	accontable control limite
	ļ	Carrogate recoveries within	
		Overall Comments	
This batch is suitable for environmen	tal interpretative use		
Porformed By:	L. Alexander	Roviewed By:	
Performed By:	L. Alexander 27-Apr-07	Reviewed By:	
Date:	21-AU-01	Date:	

URS			DATA VALIDATION SUMMARY
URS			alidation assesses each analyte in terms of all the data validation s and only the exceedances and outliers are reported in this form.
Project Name:	Hornsby Shire Council Sediment and Antifoul Study Stage 2	Project/Task Number:	43217595
Analytical Laboratory:	ALS	Batch/Ref. Number(s):	ES0703910
Date Sampled:	26/03/2007	Sample Type:	Sediment
Sample Handling, Receipt ar COC completed adequately		Yes/No Yes	Comments
Samples received intact and		Yes	
Samples analysed within app times per analytical method		Yes	
# of Primary Samples	# of QAQC Samples	# of Duplicate Samples	# of Triplicate Samples
6	0	2	0
Blanks Method Blank (MB), Rinsa	ite Blank (RB), Trip Blank (T	B), Field Blank (FB)	
Туре		Comme	
MB		All blank results	s below LOR
Laboratory Control Samp Analyte	les (LCS)		
OCPs	Recovery of	gamma-BHC (122%) in H40	greater than upper control limit (118%).
Matrix Spike (MS)			
Analyte OPPs	Recovery of	Comme	ents than upper data quality limit (110.44%)
OPPs			than upper data quality objective (106.05%)
BTEX		, , ,	nple less than lower data quality objective (70%)
	· ·		
Trip Spike /Control Trip S Analyte	% R		Comments
n/a			
Duplicates			
Laboratory Duplicates Analyte		Comme	ents
Total Major Cations	RPD	for Calcium in H41 (61.2%) exe	ceeds LOR based limits (0-20%)
Reactive Phosphorus	RPD fo	r Reactive Phosphorus not det	termined in an anonymous sample
Intra-Laboratory		Comme	ents
H42/QC1	RPDs for S	trontium (98.67%) and Calciun	n (131.88%) exceed LOR based limits.
H7/QC2		All RPDs acceptable or result	
Inter-Laboratory			
Duplicates N/A		Comme	
Surrogate Monitoring Cor	npound Analyses		
Analyta		Comm	
Analyte TPH/BTEX	Surrogate recovery o	f Toluene-D8 (80.2%) in H40 v	was less than lower data quality objective (81%).
	· · · · · · · · · · · · · · · · · · ·	Overall Comments	
concentartions of these analytes a	re below LOR. Slightly low recovery	ot affect the quality of the data as the	exceedance from control limits is minimal and all reported tot affect the characterisation of the sediment as the spike was is.
heterogeneity and do not affect the	e validity of the reported results.		aboratory duplicate analysis are likely a result of sample
TPH/BTEX surrogate recovery exe This batch is suitable for environm		and consequently not expected to affe	ect the quality of the batch data.
Performed By:	L. Alexander	Reviewed By:	

Performed By: L. Alexander Date: 16-Apr-07 Date:

Appendices

Appendix G – Laboratory Organic Ultratrace Analysis

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

ALS

Environmental Division

Tuesday 22 May, 2007

URS Australia Pty Ltd Level 3, 116 Miller Street North Sydney NSW 2060

ATTENTION: Ms Stephanie McCready

Dear Stephanie,

RE: Investigation of ES0703904 – Ultratrace Sediment Analysis

As a result of unusually low surrogate recoveries for a number of analyses completed for the work order referenced above, an investigation was undertaken by ALS to determine the cause. A summary of the findings of this investigation is given below.

Initial analysis results for OC and OP Pesticides & PCBs had low surrogate recoveries in the following ranges: OCs - ND to 64.9%, OPs - ND to 45.9%, PCBs - ND to 82.6%.

Further testing was carried out by reducing the sample weight relative to the solvent volume in an attempt to increase extraction efficiency. Results for this testing are attached in Table 1. While the reduced sample weights generally improved surrogate recoveries, there was still some variation in recoveries, particularly for PCBs. Analysis results for OCs and PCBs also showed significant variation from that reported initially for two of the three positive analytes. Results from this trial were inconclusive.

Given that the samples all had very high water contents, further testing was undertaken on the samples following ambient air drying. Results for this testing are attached in Table 2. Again, results for the pesticides and PCBs showed significant variation and generally low surrogate recoveries. PAH surrogate recoveries were generally better than those seen during the initial testing, and analysis results generally increased correspondingly, with the exception of the more volatile naphthalene which would have been reduced in concentration during the drying process.

Investigation Summary

It is our opinion that the results of the investigation show that the sample matrix for these particular sediment samples interferes significantly in the determination of OP and OC pesticides and PCBs. ALS has not previously seen such low surrogate recoveries for these analytes in sediment work. The inconsistent analytical results also suggest that the samples may be heterogeneous.

Australian Laboratory Services Pty Ltd ABN 84 009 936 029 Part of the ALS Laboratory Group 32 Shand Street, Stafford Queensland 4053 Australia Phone +61 7 3243 7222 Fax +61 7 3243 7218 www.alsglobal.com A Campbell Brothers Limited Company

It is suggested that, while analysed outside of holding times, the air dried PAH results be reported, with the exception of naphthalene, given that they have generally increased and are likely to be more representative. Given the inconsistent nature of results and surrogate recoveries for the other analytes, no changes to the originally reported results are considered warranted.

If you require any further information or would like to discuss any of these matters any further, please feel free to contact me at anytime.

Yours sincerely

Scott Wythe NSW Business Manager ALS Environmental

Table 1

ES0703904 Investigation Of Low Surrogate Recoveries For Pesticides in Sediment - Weight Tria

Test Sample	Original Sample	Sample	Solvent	Final	OP Surr.	OP Surr.
ID	ID	Weight	Volume	Volume	Rec	Rec originally
						Reported
		(g)	(mL)	(mL)	%	%
1	ES0703904-7	20	100	1	56.6	ND
2	ES0703904-7	20	100	1	60.4	
3	ES0703904-7	10	100	1	86.2	
4	ES0703904-7	10	100	1	81.6	
5	ES0703904-7	5	100	1	89.3	
6	ES0703904-7	5	100	1	103.1	
7	ES0703904-18	20	100	1	43.4	38.2
8	ES0703904-18	20	100	1	84.4	
9	ES0703904-18	10	100	1	112.4	
10	ES0703904-18	10	100	1	116.9	
11	ES0703904-18	5	100	1	92.2	
12	ES0703904-18	5	100	1	94.2	

Test Sample	Original Sample	Sample	Solvent	Final	OC Surr.	Conc DDE	Conc DDE	OC Surr.
ID	ID	Weight	Volume	Volume	Rec		Reported	Rec originally
							originally	Reported
		(g)	(mL)	(mL)	%	ug/kg	ug/kg	%
1	ES0703904-7	20	100	1	55.0	8.0	1.04	28.1
2	ES0703904-7	20	100	1	47.5	8.2		
3	ES0703904-7	10	100	1	80.0	11.1		
4	ES0703904-7	10	100	1	62.5	8.9		
5	ES0703904-7	5	100	1	77.5	12.1		
6	ES0703904-7	5	100	1	83.8	12.1		
7	ES0703904-18	20	100	1	36.3	1.7	1.33	56.1
8	ES0703904-18	20	100	1	71.3	2.9		
9	ES0703904-18	10	100	1	98.8	3.9		
10	ES0703904-18	10	100	1	95.0	4.9		
11	ES0703904-18	5	100	1	95.0	ND		
12	ES0703904-18	5	100	1	101.3	5.9		

Test Sample	Original Sample	Sample	Solvent	Final	PCB Surr.	Conc PCB	Conc PCB	PCB Surr.
ID	ID	Weight	Volume	Volume	Rec		Reported	Rec originally
							originally	Reported
		(g)	(mL)	(mL)	%	ug/kg	ug/kg	%
1	ES0703904-7	20	100	1	85.0	146	13.9	25.9
2	ES0703904-7	20	100	1	56.3	102		
3	ES0703904-7	10	100	1	77.5	129		
4	ES0703904-7	10	100	1	47.5	150		
5	ES0703904-7	5	100	1	85.0	179		
6	ES0703904-7	5	100	1	71.3	179		
7	ES0703904-18	20	100	1	37.5			56.8
8	ES0703904-18	20	100	1	67.5			
9	ES0703904-18	10	100	1	80.0			
10	ES0703904-18	10	100	1	78.8			
11	ES0703904-18	5	100	1	65.0			
12	ES0703904-18	5	100	1	67.5			

Table 2 Comparison of Initial and Pre-dried Test Results

Compariso	on of Initial and Pre-dried T	est Results	5	H7	H7	H8	H8	H9	H9	H10	H10	H17	H17	H17	H18	H18	H18	H21	H21	H22	H22	H23	H23	H24	H24	H25
						110	110	115	110					Lab Dup	1110	ino	Lab Dup			1122	1122	1120	1125	1124	1124	1125
				Initial	Pre-dried	Initial	Pre-dried	Initial	Pre-dried	Initial	Pre-dried	Initial	Pre-dried	Pre-dried	Initial	Pre-dried	Pre-dried	Initial	Pre-dried	Initial	Pre-dried	Initial	Pre-dried	Initial	Pre-dried	Initial
				Results 0703904001	Results ES0706306001	Results ES0703904002	Results ES0706306002	Results ES0703904003	Results ES0706306003	Results ES0703904004	Results ES0706306004	Results ES0703904005	Results ES0706306005	Results ES0706306005 Lab Du	Results p ES0703904006	Results ES0706306006	Results ES0706306006 Lab Dup	Results ES0703904007	Results ES0706306007	Results ES0703904008	Results ES0706306008	Results ES0703904009	Results ES0706306009	Results ES0703904010	Results ES0706306010	Results ES0703904011
EA055-103	Moisture Content (dried @ 103°C	3) %	1	74	5.9	74.7	8.6	75.7	7.4	65	9.1	62.1	5.7		61.6	7.5		65	5.6	71.7	12.6	78.2	10	76	22.1	37.7
EP130	Bromophos-ethyl		10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
EP130	Carbophenothion		10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
EP130	Chlorfenvinphos (E)		10	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0		<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
EP130 EP130	Chlorfenvinphos (Z) Chlorpyrifos	15 5	10 10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10		<10 <10								
EP130	Chlorpyrifos-methyl	10 0	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
EP130	Demeton-S-methyl		10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
EP130	Diazinon	15 5	10 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10 <10		<10	<10	<10	<10	<10	<10	<10	<10	<10
EP130 EP130	Dichlorvos Dimethoate	10 0	10 10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10		<10 <10								
EP130	Ethion	10 0	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
EP130	Fenamiphos	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
EP130	Fenthion	10 0	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
EP130 EP130	Malathion Azinphos Methyl		10 10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10		<10 <10								
EP130	Monocrotophos		10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
EP130	Parathion		10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
EP130 EP130	Parathion-methyl		10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10
EP130 EP130	Pirimphos-ethyl Prothiofos		10 10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10		<10 <10								
EP130	DEF		10	21.8	26.8	32.4	18.7	30	14.6	ND	22.6	34.9	32.5	27.2	32.2	37.8		ND	16.6	29.4	26.7	ND	33.2	28.3	34.6	41.4
EP131A	Aldrin	µg/kg (<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	0.97	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	alpha-BHC		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50
EP131A EP131A	beta-BHC delta-BHC		D.5 D.5	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50								
EP131A	4.4'-DDD		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	4.4'-DDE		0.5	<0.50	<0.50	0.66	<0.50	1.12	1.47	0.53	1.3	<0.50	0.94	1.02	<0.50	1.03		1.04	1.37	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A EP131A	4.4'-DDT DDT (total)		0.5 0.5	<0.50 <0.50	<0.50 <0.50	<0.50 0.66	<0.50 <0.50	<0.50 1.12	6.62 8.1	<0.50 0.53	<0.50 1.3	<0.50 <0.50	<0.50 0.94	<0.50 1.02	<0.50 <0.50	<0.50 1.03		<0.50 1.04	<0.50 1.37	<0.50 <0.50						
EP131A EP131A	Dieldrin		0.5 0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	alpha-Endosulfan		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	beta-Endosulfan		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A EP131A	Endosulfan sulfate Endosulfan		0.5 0.5	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50								
EP131A EP131A	Endrin		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	Endrin aldehyde		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	Endrin ketone		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A EP131A	Heptachlor Heptachlor epoxide		0.5 0.5	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50								
EP131A	Hexachlorobenzene (HCB)		0.5 0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	gamma-BHC	µg/kg (0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	Methoxychlor		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A EP131A	cis-Chlordane trans-Chlordane		0.5 0.5	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 0.57	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50	<0.50 0.87	<0.50 <0.50						
EP131A	Total Chlordane		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.57	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	0.87	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131B	Total Polychlorinated biphenyls	µg/kg	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		13.9	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
EP131B EP131B	Aroclor 1016	10 0	5 5	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<6.2 <6.2	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	-	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<6.2 <6.2	<5.0 <5.0	<6.2 <6.2	<5.0 <5.0	<5.0 <5.0
EP131B EP131B	Aroclor 1221 Aroclor 1232	-55	5	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<6.2	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0		<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<6.2 <6.2	<5.0 <5.0	<6.2 <6.2	<5.0 <5.0	<5.0
EP131B	Aroclor 1242		5	<5.0	<5.0	<5.0	<5.0	<6.2	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<6.2	<5.0	<6.2	<5.0	<5.0
EP131B	Aroclor 1248		5	<5.0	<5.0	<5.0	<5.0	<6.2	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0	<5.0	<5.0	<6.2	<5.0	<6.2	<5.0	<5.0
EP131B EP131B	Aroclor 1254 Aroclor 1260	µg/kg µa/ka	5	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<6.2 <6.2	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0		13.9 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<6.2 <6.2	<5.0 <5.0	<6.2 <6.2	<5.0 <5.0	<5.0 <5.0
EP131B EP131A	Dibromo-DDE	µg/kg % (25.3	17.8	35.1	16.4	45.6	22.3	18.3	21.3	24.4	72.1	77.0	41.7	61.1		28.1	<3.0	47.2	12.2	×0.2 ND	17.5	15.5	21.1	64.9
EP131B	Decachlorobiphenyl	% (0.5	26.6	15.4	39.9	13.6	47.9	25.5	21.9	14	23.5	48.1	67.0	51.6	57.4		25.9	12	55.5	8.8	ND	10.1	19.2	13.5	61
EP132	3-Methylcholanthrene	µg/kg		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
EP132 EP132	2-Methylnaphthalene 7.12-Dimethylbenz(a)anthracene	μg/kg e μg/kg	10 10	70 <10	20 <10	<10 <10	20 <10	70 <10	20 <10	40 <10	20 <10	50 <10	10 <10		50 <10	20 <10	10 <10	50 <10	30 <10	<10 <10	20 <10	70 <10	10 <10	50 <10	10 <10	30 <10
EP132	Acenaphthene		10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	30	<10	<10	10	<10	<10	<10	<10	<10	<10	<10
EP132	Acenaphthylene	µg/kg	10	<10	10	10	20	10	30	20	20	20	20		30	60	40	50	60	20	40	20	20	10	10	<10
EP132	Anthracene		10	10	10	<10	20 70	20	20	20	20	20	20		20	70	30	50	60	20	40	20 40	20	10	10	<10
EP132 EP132	Benz(a)anthracene Benzo(a)pyrene		10 10	50 70	70 90	30 50	100	40 50	70 100	50 70	60 90	110 140	140 180		140 190	600 630	220 420	110 160	160 250	70 110	130 200	40 60	50 90	30 50	30 50	20 20
EP132	Benzo(b)fluoranthene		10	60	110	50	120	60	130	80	120	150	250		210	760	480	160	310	90	250	60	100	50	60	20
EP132	Benzo(e)pyrene		10	50	60	40	70	40	80	60	70	100	120		140	440	300	120	180	70	140	50	60	40	40	10
EP132 EP132	Benzo(g.h.i)perylene		10 10	60 60	50 70	50 40	40 80	50 40	40 100	70 50	40 90	110 130	50 130		160 160	430 310	320 170	120 150	90 200	80 100	70 160	50 60	70 60	40 40	40 40	20 10
EP132 EP132	Benzo(k)fluoranthene Chrysene		10	60	80	40	80	40 50	80	50 70	90 80	150	160		170	610	380	150	200	90	210	50	60	40	40	20
EP132	Coronene		10	10	<10	10	<10	20	<10	20	<10	30	<10		40	20	20	40	20	30	20	20	20	10	20	<10
EP132	Dibenz(a.h)anthracene		10	10	20	<10	10	<10	<10	<10	<10	20	20		30	50	40	30	30	10	20	10	10	<10	<10	<10
EP132 EP132	Fluoranthene Fluorene		10 10	90 10	130 <10	70 <10	140 <10	70 10	160 <10	110 <10	140 <10	240 10	280 <10		260 10	1080 40	580 10	250 10	410 20	160 <10	320 10	90 10	130 <10	60 <10	70 <10	50 <10
EP132 EP132	Indeno(1.2.3.cd)pyrene		10	50	<10 40	<10 40	30	30	30	<10 40	30	90	<10 50		120	40	300	90	20 70	<10 60	60	40	<10 60	<10 30	<10 40	10
EP132	N-2-Fluorenyl Acetamide		100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
EP132	Naphthalene		10	70	20	<10	20	70	20	40	20	50	20		50	30	20	50	40	<10	30	70	20	50	20	30
EP132 EP132	Perylene Phenanthrene		10 10	30 50	60 40	20 30	60 50	20 50	60 50	30 50	40 50	60 80	90 70		60 70	150 210	100 80	50 110	60 150	30 60	60 110	20 50	40 40	20 40	30 40	<10 40
EP132	Pyrene		10	100	140	70	160	80	170	110	140	220	260		260	990	590	260	420	160	320	100	140	40 70	80	40
EP132	2-Fluorobiphenyl	%	10	62.9	98.6	49.8	94.7	55.2	92.8	64.7	76.4	65	86.6	-	53.9	99.8	83.5	54.8	91.3	50	80.2	57.5	71	71.3	82.6	60
EP132	Anthracene-d10		10	67.7 62.7	101	67.3	96.7	66.8	95.7	72.4	75	72.6	87.5		67	99.6	83.6	62.4	88.2	62	80.3	68	73.4	81.5	84.8	67.2
EP132	4-Terphenyl-d14	%	10	63.7	103	61.8	103	63.5	110	72.3	76.7	72.4	92.4		63.2	106	85.2	54.3	104	60.1	86.7	62.8	87.3	75.4	91.1	64

Table 2 Comparison of Initial and Pre-dried Test Results

Comparis	on of Initial and Pre-dried Te	st Resul	lts																	
				H25	H25	H26	H26	H28	H28	H31	H31	H31	H37	H37	H38	H38	QC3	QC3	QC4	QC4
					Lab Dup							Lab Dup								
				Pre-dried	Pre-dried	Initial	Pre-dried	Initial	Pre-dried	Initial	Pre-dried	Pre-dried	Initial	Pre-dried	Initial	Pre-dried	Initial	Pre-dried	Initial	Pre-dried
				Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
					ES0706306011 Lab Dup	ES0703904012	ES0706306012		ES0706306013	ES0703904014	ES0706306014	ES0706306014 Lab Dup			ES0703904016	ES0706306016	ES0703904017		ES0703904018	ES0706306018
EA055-103	Moisture Content (dried @ 103°C)	%	1	1.6		60.4	4.8	48.5	2.2	62.4	19.9		64.7	7.2	60	6.6	59.5	11.2	74.5	33.2
EP130	Bromophos-ethyl		10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10
EP130	Carbophenothion	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10
EP130	Chlorfenvinphos (E)	µg/kg	10	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0		<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
EP130	Chlorfenvinphos (Z)	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10
EP130	Chlorpyrifos	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10
EP130	Chlorpyrifos-methyl	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10
EP130	Demeton-S-methyl	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10
EP130	Diazinon	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10
EP130	Dichlorvos	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10
EP130	Dimethoate	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10
EP130	Ethion	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10
EP130	Fenamiphos	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10
EP130 EP130	Fenthion	µg/kg	10	<10	<10	<10 <10	<10	<10	<10	<10	<10 <10		<10	<10	<10	<10	<10	<10 <10	<10	<10
EP130 EP130	Malathion	µg/kg	10	<10	<10 <10	<10 <10	<10	<10 <10	<10 <10	<10	<10		<10 <10	<10 <10	<10 <10	<10	<10 <10	<10 <10	<10	<10
	Azinphos Methyl	µg/kg	10	<10			<10			<10						<10			<10	<10
EP130 EP130	Monocrotophos	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10	<10	<10	<10	<10
	Parathion Parathian mathud	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10
EP130 EP130	Parathion-methyl Pirimphos-ethyl	µg/kg	10 10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10		<10 <10							
EP130	Prothiofos	µg/kg	10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10
EP130	DEF	µg/kg %	10	49.8	52.9	22.6	15.7	ND	40.9	27.3	31.8		45.9	17	26.5	46.6	37.7	27	38.2	30.2
EP130	Aldrin		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A EP131A	alpha-BHC		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A EP131A	beta-BHC	µg/kg µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A EP131A	delta-BHC	µg/kg µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	4.4'-DDD		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	4.4'-DDE	µg/kg µg/kg	0.5	<0.50	<0.50	<0.50	0.84	<0.50	1.61	<0.50	<0.50		<0.50	<0.50	<0.50	0.95	<0.50	<0.50	1.33	0.96
EP131A	4.4'-DDT		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	DDT (total)		0.5	<0.50	<0.50	<0.50	0.84	<0.50	1.61	<0.50	<0.50		<0.50	<0.50	<0.50	0.95	<0.50	<0.50	1.33	0.96
EP131A	Dieldrin		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	alpha-Endosulfan	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	beta-Endosulfan		0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	Endosulfan sulfate	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	Endosulfan	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	Endrin	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	Endrin aldehyde	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	Endrin ketone	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	Heptachlor	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	4.72	<0.50	<0.50		<0.50	0.73	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	Heptachlor epoxide	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	Hexachlorobenzene (HCB)	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	gamma-BHC	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	Methoxychlor	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	cis-Chlordane	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	trans-Chlordane	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131A	Total Chlordane	µg/kg	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EP131B	Total Polychlorinated biphenyls	µg/kg	5	<5.0	<5.0	<5.0	<5.0	16	<5.0	<5.0	<5.0	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
EP131B	Aroclor 1016	µg/kg	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
EP131B	Aroclor 1221	µg/kg	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
EP131B	Aroclor 1232	µg/kg	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
EP131B	Aroclor 1242	µg/kg	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
EP131B	Aroclor 1248	µg/kg	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
EP131B EP131B	Aroclor 1254 Aroclor 1260	µg/kg	5 5	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	16 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0		<5.0 <5.0							
EP131B EP131A	Dibromo-DDE	µg/kg %	5 0.5	<5.0	<5.0 62.5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0 30.2	<5.0	<5.0	<5.0	<5.0 56.1	<5.0
EP131A EP131B	Decachlorobiphenyl	%	0.5	59	49.0	82.6	30.6	24.4	83.5	41.6	57.4		64.1	19.6	30.2	67.7	42.4	37.2	56.8	4.3
EP131B EP132	3-Methylcholanthrene	γ ₀ μg/kg	10	<10	49.0	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
EP132	2-Methylnaphthalene	µg/kg	10	<10		30	<10	30	<10	40	10	20	50	20	50	10	40	<10	40	20
EP132	7.12-Dimethylbenz(a)anthracene	µg/kg	10	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
EP132	Acenaphthene	µg/kg	10	<10		20	10	20	<10	<10	<10	<10	10	10	<10	<10	<10	<10	<10	<10
EP132	Acenaphthylene	µg/kg	10	<10		20	20	20	<10	<10	10	<10	40	50	30	30	<10	<10	20	20
EP132	Anthracene	µg/kg	10	<10		80	60	60	<10	<10	<10	10	40	60	20	30	<10	<10	10	20
EP132	Benz(a)anthracene	µg/kg	10	20		370	480	320	30	20	40	30	160	210	130	170	20	30	40	50
EP132	Benzo(a)pyrene	µg/kg	10	20		410	560	380	40	30	50	40	170	230	160	210	30	40	60	60
EP132	Benzo(b)fluoranthene	µg/kg	10	20		370	460	340	40	30	60	50	200	470	180	240	40	50	70	80
EP132	Benzo(e)pyrene	µg/kg	10	10		220	220	210	30	20	40	30	120	170	120	140	30	30	50	50
EP132	Benzo(g.h.i)perylene	µg/kg	10	20		220	220	210	30	20	40	30	110	140	120	160	30	30	50	50
EP132	Benzo(k)fluoranthene	µg/kg	10	20		260	230	250	20	30	30	30	130	160	140	150	30	20	50	30
EP132	Chrysene	µg/kg	10	20		360	460	310	30	30	40	40	190	450	150	200	30	40	60	60
EP132	Coronene	µg/kg	10	<10		50	50	50	<10	<10	10	10	30	40	40	50	<10	10	20	20
EP132	Dibenz(a.h)anthracene	µg/kg	10	<10		50	50	60	<10	<10	<10	<10	20	40	30	40	<10	<10	<10	10
EP132	Fluoranthene	µg/kg	10	50		750	930	590	50	40	80	70	370	520	240	380	50	60	80	100
EP132	Fluorene	µg/kg	10	<10		20	10	10	<10	<10	<10	<10	20	20	10	10	<10	<10	<10	<10
EP132	Indeno(1.2.3.cd)pyrene	µg/kg	10	10		180	210	170	20	20	30	30	90	110	90	120	20	20	40	40
EP132	N-2-Fluorenyl Acetamide	µg/kg	100	<100		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
EP132	Naphthalene	µg/kg	10	10		30	20	30	10	40	20	20	60	30	50	20	40	10	40	20
EP132	Perylene	µg/kg	10	10		100	100	90	30	20	40	20	60	120	60	90	20	30	30	40
EP132	Phenanthrene	µg/kg	10	30		270	200	180	20	30	30	40	100	130	70	90	30	30	40	40
EP132	Pyrene	µg/kg	10	50		820	1000	660	60	50	90	90	350	540	240	370	50	70	90	100
EP132	2-Fluorobiphenyl	%	10	96.4		54.5	79.8	60	78.6	55.2	86.5	78.4	59.3	91.3	57.9	79.2	59.9	73.1	60.3	81.5
EP132	Anthracene-d10	%	10	96.7		57.8	78.7	67.6	76.5	55.4	87.1	79.2	67.5	94.2	63.4	79	66.7	72.9	67.6	81.8
EP132	4-Terphenyl-d14	%	10	112		66.4	85.6	65.9	81.4	56.7	90.5	93.5	69.2	109	61.7	86.9	64.7	74.6	66.4	79.6

<10 30.2

Sample ID	H7	H7		H8	H8		H9	H9		H10	H10		H17	H17
	Analysis 1	Analysis 2	%RPD	Analysis 1	Analysis 2									
2-Methylnaphthalene	70	20	111	<10	20	-	70	20	111	40	20	67	50	10
Acenaphthene	<10	<10	-	<10	<10	-	<10	<10	-	<10	<10	-	<10	<10
Acenaphthylene	<10	10	-	10	20	67	10	30	100	20	20	0	20	20
Anthracene	10	10	0	<10	20	-	20	20	0	20	20	0	20	20
Benz(a)anthracene	50	70	33	30	70	80	40	70	55	50	60	18	110	140
Benzo(a)pyrene	70	90	25	50	100	67	50	100	67	70	90	25	140	180
Benzo(b)fluoranthene	60	110	59	50	120	82	60	130	74	80	120	40	150	250
Benzo(e)pyrene	50	60	18	40	70	55	40	80	67	60	70	15	100	120
Benzo(g.h.i)perylene	60	50	18	50	40	22	50	40	22	70	40	55	110	50
Benzo(k)fluoranthene	60	70	15	40	80	67	40	100	86	50	90	57	130	130
Chrysene	60	80	29	40	80	67	50	80	46	70	80	13	150	160
Coronene	10	<10	-	10	<10	-	20	<10	-	20	<10	-	30	<10
Dibenz(a.h)anthracene	10	20	67	<10	10	-	<10	<10	-	<10	<10	-	20	20
Fluoranthene	90	130	36	70	140	67	70	160	78	110	140	24	240	280
Fluorene	10	<10	-	<10	<10	-	10	<10	-	<10	<10	-	10	<10
Indeno(1.2.3.cd)pyrene	50	40	22	40	30	29	30	30	0	40	30	29	90	50
Naphthalene	70	20	111	<10	20	-	70	20	111	40	20	67	50	20
Perylene	30	60	67	20	60	100	20	60	100	30	40	29	60	90
Phenanthrene	50	40	22	30	50	50	50	50	0	50	50	0	80	70
Pyrene	100	140	33	70	160	78	80	170	72	110	140	24	220	260
% Recovery of Surrogates														
2-Fluorobiphenyl	62.9	98.6		49.8	94.7		55.2	92.8		64.7	76.4		65.0	86.6
Anthracene-d10	67.7	101.0		67.3	96.7		66.8	95.7		72.4	75.0		72.6	87.5
4-Terphenyl-d14	63.7	103.0		61.8	103.0		63.5	110.0		72.3	76.7		72.4	92.4

Polycyclic Aromatic Hydrocarbon Results for Hawkesbury River Sediments (in µg/kg dry wt.)

The following compounds were not detected in any samples: 3-methylcholanthrene (<10 µg/kg), 7,12-dimethylbenz(a)anthracene (<10 µg/kg), N-2-Fluorenyl Acetamide (<100 µg/kg) Samples were extracted as received in the first analysis.

Samples were air-dried prior to extraction in the second analysis.

RPD = Relative Percent Difference

Field Duplicate Results for PAHs (in µg/kg dry wt.)

Sample ID	H9	QC4		H9	QC4		H31	QC3		H31	QC3	
	Analysis 1	Analysis 1	%RPD	Analysis 2	Analysis 2	%RPD	Analysis 1	Analysis 1	%RPD	Analysis 2	Analysis 2	%RPD
2-Methylnaphthalene	70	40	55	20	20	0	40	40	0	10	<10	-
Acenaphthene	<10	<10	-	<10	<10	-	<10	<10	-	<10	<10	-
Acenaphthylene	10	20	67	30	20	40	<10	<10	-	10	<10	-
Anthracene	20	10	67	20	20	0	<10	<10	-	<10	<10	-
Benz(a)anthracene	40	40	0	70	50	33	20	20	0	40	30	29
Benzo(a)pyrene	50	60	18	100	60	50	30	30	0	50	40	22
Benzo(b)fluoranthene	60	70	15	130	80	48	30	40	29	60	50	18
Benzo(e)pyrene	40	50	22	80	50	46	20	30	40	40	30	29
Benzo(g.h.i)perylene	50	50	0	40	50	22	20	30	40	40	30	29
Benzo(k)fluoranthene	40	50	22	100	30	108	30	30	0	30	20	40
Chrysene	50	60	18	80	60	29	30	30	0	40	40	0
Coronene	20	20	0	<10	20	-	<10	<10	-	10	10	0
Dibenz(a.h)anthracene	<10	<10	-	<10	10	-	<10	<10	-	<10	<10	-
Fluoranthene	70	80	13	160	100	46	40	50	22	80	60	29
Fluorene	10	<10	-	<10	<10	-	<10	<10	-	<10	<10	-
Indeno(1.2.3.cd)pyrene	30	40	29	30	40	29	20	20	0	30	20	40
Naphthalene	70	40	55	20	20	0	40	40	0	20	10	67
Perylene	20	30	40	60	40	40	20	20	0	40	30	29
Phenanthrene	50	40	22	50	40	22	30	30	0	30	30	0
Pyrene	80	90	12	170	100	52	50	50	0	90	70	25
% Recovery of Surrogates												
2-Fluorobiphenyl	55.2	60.3		92.8	81.5		55.2	59.9		86.5	73.1	
Anthracene-d10	66.8	67.6		95.7	81.8		55.4	66.7		87.1	72.9	
4-Terphenyl-d14	63.5	66.4		110	79.6		56.7	64.7		90.5	74.6	

The following compounds were not detected in any samples: 3-methylcholanthrene (<10 µg/kg), 7,12-dimethylbenz(a)anthracene (<10 µg/kg), N-2-Fluorenyl Acetamide (<100 µg/kg) Samples were extracted as received in the first analysis.

Samples were air-dried prior to extraction in the second analysis.

RPD = Relative Percent Difference

Sample ID	H7	H7 Dup		H25	H25 Dup		H18	H18 Dup		H31	H31 Dup	
	Analysis 1	Analysis 1	%RPD	Analysis 1	Analysis 1	%RPD	Analysis 2	Analysis 2	%RPD	Analysis 2	Analysis 2	%RPD
2-Methylnaphthalene	70	70	0	30	20	40	20	10	67	10	20	67
Acenaphthene	<10	<10	-	<10	<10	-	30	<10	-	<10	<10	-
Acenaphthylene	<10	10	-	<10	<10	-	60	40	40	10	<10	-
Anthracene	10	20	67	<10	<10	-	70	30	80	<10	10	-
Benz(a)anthracene	50	50	0	20	10	67	600	220	93	40	30	29
Benzo(a)pyrene	70	70	0	20	10	67	630	420	40	50	40	22
Benzo(b)fluoranthene	60	70	15	20	10	67	760	480	45	60	50	18
Benzo(e)pyrene	50	50	0	10	10	0	440	300	38	40	30	29
Benzo(g.h.i)perylene	60	60	0	20	10	67	430	320	29	40	30	29
Benzo(k)fluoranthene	60	50	18	10	10	0	310	170	58	30	30	0
Chrysene	60	60	0	20	10	67	610	380	46	40	40	0
Coronene	10	10	0	<10	<10	-	20	20	0	10	10	0
Dibenz(a.h)anthracene	10	10	0	<10	<10	-	50	40	22	<10	<10	-
Fluoranthene	90	100	11	50	30	50	1080	580	60	80	70	13
Fluorene	10	10	0	<10	<10	-	40	10	120	<10	<10	-
Indeno(1.2.3.cd)pyrene	50	40	22	10	<10	-	430	300	36	30	30	0
Naphthalene	70	70	0	30	20	40	30	20	40	20	20	0
Perylene	30	30	0	<10	<10	-	150	100	40	40	20	67
Phenanthrene	50	50	0	40	20	67	210	80	90	30	40	29
Pyrene	100	100	0	40	30	29	990	590	51	90	90	0
% Recovery of Surrogates												
2-Fluorobiphenyl	62.9	60.8		60.0	58.3		99.8	83.5		86.5	78.4	
Anthracene-d10	67.7	68.0		67.2	64.3		99.6	83.6		87.1	79.2	
4-Terphenyl-d14	63.7	63.8		64.0	64.5		106	85.2		90.5	93.5	

Laboratory Duplicate Results for PAHs (in µg/kg dry wt.)

The following compounds were not detected in any samples: 3-methylcholanthrene (<10 µg/kg), 7,12-dimethylbenz(a)anthracene (<10 µg/kg), N-2-Fluorenyl Acetamide (<100 µg/kg) Samples were extracted as received in the first analysis.

Samples were air-dried prior to extraction in the second analysis.

RPD = Relative Percent Difference

Sample ID	Blank	LCS	MS (H7)	Blank	LCS	MS(H18)
	µg/kg	%recovery	%recovery	µg/kg	%recovery	%recovery
	Analysis 1	Analysis 1	Analysis 1	Analysis 2	Analysis 2	Analysis 2
2-Methylnaphthalene	<10	86.2	61.6	<10	86.5	79.7
Acenaphthene	<10	92.4	78.3	<10	94.0	50.6
Acenaphthylene	<10	89.8	77.1	<10	88.7	56.9
Anthracene	<10	88.2	83.4	<10	81.9	27.4
Benz(a)anthracene	<10	87.5	66.9	<10	88.2	ND
Benzo(a)pyrene	<10	86.2	71.6	<10	84.3	ND
Benzo(b)fluoranthene	<10	91.2	71.5	<10	93.7	ND
Benzo(e)pyrene	<10	88.4	68.6	<10	93.2	ND
Benzo(g.h.i)perylene	<10	93.3	74.2	<10	92.2	ND
Benzo(k)fluoranthene	<10	98.1	71.4	<10	86.9	ND
Chrysene	<10	88.0	68.5	<10	89.8	ND
Coronene	<10	100.0	81.3	<10	90.2	81.3
Dibenz(a.h)anthracene	<10	94.1	78.1	<10	92.7	60.6
Fluoranthene	<10	96.2	73.0	<10	89.1	ND
Fluorene	<10	93.8	77.4	<10	91.9	44.8
Indeno(1.2.3.cd)pyrene	<10	93.4	74.8	<10	95.2	ND
Naphthalene	<10	91.1	65.5	<10	84.3	80.0
Perylene	<10	84.8	70.9	<10	85.6	ND
Phenanthrene	<10	95.5	80.5	<10	88.0	ND
Pyrene	<10	98.4	72.4	<10	88.1	ND
% Recovery of Surrogates						
2-Fluorobiphenyl	84.5	79.4	68.7	74.0	87.5	86.1
Anthracene-d10	111	91.9	75.7	72.4	89.8	72.2
4-Terphenyl-d14	114	98.4	70.0	83.3	95.4	73.4

Laboratory Blank, Laboratory Control Spike (LCS) and Matrix Spike (MS) Results for PAHs

Samples were extracted as received in the first analysis. Samples were air-dried prior to extraction in the second analysis.

	H18	H18		H21	H21		H22	H22		H23	H23		H24	H24		H25
%RPD	Analysis 1	Analysis 2	%RPD	Analysis 1												
133	50	20	86	50	30	50	<10	20	•	70	10	150	50	10	133	30
-	<10	30	-	<10	10	-	<10	<10	-	<10	<10	-	<10	<10	-	<10
0	30	60	67	50	60	18	20	40	67	20	20	0	10	10	0	<10
0	20	70	111	50	60	18	20	40	67	20	20	0	10	10	0	<10
24	140	600	124	110	160	37	70	130	60	40	50	22	30	30	0	20
25	190	630	107	160	250	44	110	200	58	60	90	40	50	50	0	20
50	210	760	113	160	310	64	90	250	94	60	100	50	50	60	18	20
18	140	440	103	120	180	40	70	140	67	50	60	18	40	40	0	10
75	160	430	92	120	90	29	80	70	13	50	70	33	40	40	0	20
0	160	310	64	150	200	29	100	160	46	60	60	0	40	40	0	10
6	170	610	113	150	200	29	90	210	80	50	60	18	40	40	0	20
-	40	20	67	40	20	67	30	20	40	20	20	0	10	20	67	<10
0	30	50	50	30	30	0	10	20	67	10	10	0	<10	<10	-	<10
15	260	1080	122	250	410	48	160	320	67	90	130	36	60	70	15	50
-	10	40	120	10	20	67	<10	10	-	10	<10	-	<10	<10	-	<10
57	120	430	113	90	70	25	60	60	0	40	60	40	30	40	29	10
86	50	30	50	50	40	22	<10	30	-	70	20	111	50	20	86	30
40	60	150	86	50	60	18	30	60	67	20	40	67	20	30	40	<10
13	70	210	100	110	150	31	60	110	59	50	40	22	40	40	0	40
17	260	990	117	260	420	47	160	320	67	100	140	33	70	80	13	40
	53.9	99.8		54.8	91.3		50.0	80.2		57.5	71.0		71.3	82.6		60.0
	67.0	99.6		62.4	88.2		62.0	80.3		68.0	73.4		81.5	84.8		67.2
	63.2	106.0		54.3	104.0		60.1	86.7		62.8	87.3		75.4	91.1		64.0

H25		H26	H26		H28	H28		H31	H31		H37	H37		H38	H38	
Analysis 2	%RPD	Analysis 1	Analysis 2	%RPD												
<10	-	30	<10	-	30	<10	-	40	10	120	50	20	86	50	10	133
<10	-	20	10	67	20	<10	-	<10	<10	-	10	10	0	<10	<10	-
<10	-	20	20	0	20	<10	-	<10	10	-	40	50	22	30	30	0
<10	-	80	60	29	60	<10	-	<10	<10	-	40	60	40	20	30	40
20	0	370	480	26	320	30	166	20	40	67	160	210	27	130	170	27
20	0	410	560	31	380	40	162	30	50	50	170	230	30	160	210	27
20	0	370	460	22	340	40	158	30	60	67	200	470	81	180	240	29
10	0	220	220	0	210	30	150	20	40	67	120	170	34	120	140	15
20	0	220	220	0	210	30	150	20	40	67	110	140	24	120	160	29
20	67	260	230	12	250	20	170	30	30	0	130	160	21	140	150	7
20	0	360	460	24	310	30	165	30	40	29	190	450	81	150	200	29
<10	-	50	50	0	50	<10	-	<10	10	-	30	40	29	40	50	22
<10	-	50	50	0	60	<10	-	<10	<10	-	20	40	67	30	40	29
50	0	750	930	21	590	50	169	40	80	67	370	520	34	240	380	45
<10	-	20	10	67	10	<10	-	<10	<10	-	20	20	0	10	10	0
10	0	180	210	15	170	20	158	20	30	40	90	110	20	90	120	29
10	100	30	20	40	30	10	100	40	20	67	60	30	67	50	20	86
10	-	100	100	0	90	30	100	20	40	67	60	120	67	60	90	40
30	29	270	200	30	180	20	160	30	30	0	100	130	26	70	90	25
50	22	820	1000	20	660	60	167	50	90	57	350	540	43	240	370	43
96.4		54.5	79.8		60.0	78.6		55.2	86.5		59.3	91.3		57.9	79.2	
96.7		57.8	78.7		67.6	76.5		55.4	87.1		67.5	94.2		63.4	79.0	
112.0		66.4	85.6		65.9	81.4		56.7	90.5		69.2	109.0		61.7	86.9	

Organochlorine Pesticide Results for Hawkesbury River Sediments

	DDE (µg/l	kg dry wt.)		Surrogate % recovery (dibromo-DDE)		
Sample ID	Analysis 1	Analysis 2	% RPD	Analysis 1	Analysis 2	
H7	<0.5	<0.5		25.3	17.8	
H8	0.66	<0.5		35.1	16.4	
H9	1.12	1.47	27	45.6	22.3	
H10	0.53	1.30	84	18.3	21.3	
H17	<0.5	0.94	-	24.4	72.1	
H18	<0.5	1.03	-	41.7	61.1	
H21	1.04	1.37	27	28.1	13.6	
H22	<0.5	<0.5		47.2	12.2	
H23	<0.5	<0.5		nd	17.5	
H24	<0.5	<0.5		15.5	21.1	
H25	<0.5	<0.5		64.9	64.7	
H26	<0.5	0.84	-	57.6	22.9	
H28	<0.5	1.61	-	24.4	79.1	
H31	<0.5	<0.5		41.6	63.6	
H37	<0.5	<0.5		61.1	19.8	
H38	<0.5	0.95	-	30.2	49.1	

Organochlorine Pesticide Field Duplicate Results

	DDE (µg/	kg dry wt.)		Surrogate ((dibrom	
Sample ID	Analysis 1	Analysis 2	% RPD	Analysis 1	Analysis 2
H9	1.12	1.47	27	45.6	22.3
QC4	1.33	0.96	32	56.1	68.6
% RPD	17	42			
H31	<0.5	<0.5		41.6	63.6
QC3	<0.5	<0.5		42.4	59.5

Organochlorine Pesticide Laboratory Duplicate Results

	DDE (µg/l	kg dry wt.)	Surrogate % recovery (dibromo-DDE)		
Sample ID	Analysis 1	Analysis 2	Analysis 1	Analysis 2	
H7	<0.5	-	25.3	-	
H7 Dup	<0.5	-		-	
H25	<0.5	<0.5	64.9	64.9	
H25 Dup	<0.5	<0.5		64.7	
H17	-	0.94	-	72.1	
H17 Dup	-	1.02	-	77.0	
% RPD		8			

Samples were extracted as received in the first analysis.

Samples were air-dried prior to extraction in the second analysis.

nd = not determined

RPD = Relative Percent Difference

No other OC pesticides were detected in any samples, with the exception that 6.62 μ g/kg of p,p-DDT was detected in sample H9 in the second analysis.

	Blank	LCS	MS (for H7)	Blank	LCS	MS (for H25)
	µg/kg	% recovery	% recovery	µg/kg	% recovery	% recovery
Analyte	Analysis 1	Analysis 1	Analysis 1	Analysis 2	Analysis 2	Analysis 2
Aldrin	< 0.5	72.6	16.0	< 0.5	79.7	52.6
alpha-BHC	< 0.5	69.0	34.5	< 0.5	77.5	42.4
beta-BHC	< 0.5	97.0	33.8	< 0.5	85.9	51.6
delta-BHC	< 0.5	69.9	37.1	< 0.5	84.8	43.3
4.4'-DDD	< 0.5	80.8	63.4	< 0.5	118	92.5
4.4'-DDE	< 0.5	70.3	52.9	< 0.5	79.0	47.0
4.4'-DDT	< 0.5	75.6	74.6	< 0.5	88.1	56.8
DDT (total)	< 0.5			< 0.5		
Dieldrin	< 0.5	90.3	31.1	< 0.5	104	61.2
alpha-Endosulfan	< 0.5	74.3	48.7	< 0.5	89.7	48.3
beta-Endosulfan	< 0.5	68.9	52.3	< 0.5	113	38.4
Endosulfan sulfate	< 0.5	76.5	112	< 0.5	92.0	74.6
Endosulfan	< 0.5			< 0.5		
Endrin	< 0.5	78.1	55.4	< 0.5	91.9	96.0
Endrin aldehyde	< 0.5	73.8	21.3	< 0.5	83.4	35.8
Endrin ketone	< 0.5	87.6	36.2	< 0.5	104	45.8
Heptachlor	< 0.5	83.7	18.7	< 0.5	121	106
Heptachlor epoxide	< 0.5	81.8	31.4	< 0.5	94.8	52.4
Hexachlorobenzene	< 0.5	63.6	32.2	< 0.5	85.0	43.9
gamma-BHC	< 0.5	80.6	37.6	< 0.5	80.0	53.1
Methoxychlor	< 0.5	71.8	19.0	< 0.5	94.6	75.8
cis-Chlordane	< 0.5	74.4	25.8	< 0.5	85.2	39.0
trans-Chlordane	< 0.5	63.8	32.9	< 0.5	106	51.8
Total Chlordane	< 0.5			< 0.5		
% Recovery of						
dibromo-DDE						
surrogate	73.8	70.0	40.8	111	119	87.4

Laboratory Blank, Laboratory Control Spike (LCS) and Matrix Spike (MS) Results for Organochlorine Pesticides

Polychlorinated biphenyl Results for Hawkesbury River Sediments

	Tatal DCD //	alle dreit	Ŭ	Surrogate % recovery (decachlorobiphenyl)		
		ug/kg dry wt.)				
Sample ID	Analysis 1	Analysis 2	Analysis 1	Analysis 2		
H7	<5	<5	26.6	15.4		
H8	<5	<5	39.9	13.6		
H9	<5	<5	47.9	25.5		
H10	<5	<5	21.9	14.0		
H17	<5	<5	23.5	48.1		
H18	<5	<5	51.6	57.4		
H21	13.9	<5	25.9	12.0		
H22	<5	<5	55.5	8.8		
H23	<5	<5	nd	10.1		
H24	<5	<5	19.2	13.5		
H25	<5	<5	61.0	59.0		
H26	<5	<5	82.6	30.6		
H28	16	<5	24.5	83.5		
H31	<5	<5	43.7	57.4		
H37	<5	<5	64.1	16.5		
H38	<5	<5	37.1	67.7		

Field Duplicate Results

	T (1000 (•	% recovery
	Total PCB (ug/kg dry wt.)	(decachio	robiphenyl)
Sample ID	Analysis 1	Analysis 2	Analysis 1	Analysis 2
H9	<5	<5	47.9	25.5
QC4	<5	<5	56.8	4.3
H31	<5	<5	43.7	57.4
QC3	<5	<5	47.0	37.2

Laboratory Duplicate Results

	Total PCB (µg/kg dry wt.)		Surrogate % recovery (decachlorobiphenyl)		
Sample ID	Analysis 1	Analysis 2	Analysis 1	Analysis 2	
H7	<5		26.6		
H7 Dup	<5				
H25	<5		61.0		
H25 Dup	<5				
H17		<5		48.1	
H17 Dup		<5		67.0	

Samples were extracted as received in the first analysis. Samples were air-dried prior to extraction in the second analysis. nd = not determined

PCB detected consisted entirely of Aroclor 1254

Laboratory Blank, Laboratory Control Spike (LCS) and Matrix Spike (MS) Results for Polychlorinated biphenyls

	Blank	LCS	MS (for H7)	Blank	LCS	MS (for H25)
	µg/kg	% recovery	% recovery	µg/kg	% recovery	% recovery
Analyte	Analysis 1	Analysis 1	Analysis 1	Analysis 2	Analysis 2	Analysis 2
Total PCB	< 5	95.4	36.0	< 5	85.9	58.6
Aroclor 1016	< 5			< 5		
Aroclor 1221	< 5			< 5		
Aroclor 1232	< 5			< 5		
Aroclor 1242	< 5			< 5		
Aroclor 1248	< 5			< 5		
Aroclor 1254	< 5	95.4	36.0	< 5	85.9	58.6
Aroclor 1260	< 5			< 5		
% Recovery of						
Decachloro-						
biphenyl						
surrogate	75.3	94.0	36.0	90.8	81.8	68.7

Samples were extracted as received in the first analysis. Samples were air-dried prior to extraction in the second analysis.

Organophosphorus Pesticide Surrogate Recovery Results for Hawkesbury River Sediments

	Surrogate % reco	very (DEF)
Sample ID	Analysis 1	Analysis 2
H7	21.8	26.8
H8	32.4	18.7
H9	30	14.6
H10	nd	22.6
H17	34.9	32.5
H18	32.2	37.8
H21	nd	16.6
H22	29.4	26.7
H23	nd	33.2
H24	28.3	34.6
H25	41.4	49.8
H26	22.6	15.7
H28	nd	40.9
H31	27.3	31.8
H37	45.9	17.0
H38	26.5	46.6

Field Duplicate Results

	Surrogate % reco	very (DEF)
Sample ID	Analysis 1	Analysis 2
H9	30	14.6
QC4	38.2	30.2
H31	27.3	31.8
QC3	37.7	27

Laboratory Duplicate Results

	Surrogate % reco	very (DEF)
Sample ID	Analysis 1	Analysis 2
H7	21.8	-
H7 Dup		-
H25	41.4	49.8
H25 Dup		52.9
H17	-	32.5
H17 Dup	-	27.2

Samples were extracted as received in the first analysis. Samples were air-dried prior to extraction in the second analysis. nd = not determined

No OP pesticides were detected in any samples.

	Blank	LCS	MS (for H7)	Blank	LCS	MS (for H25)
			· · · ·			· · · /
	µg/kg	% recovery	% recovery	µg/kg	% recovery	% recovery
Analyte	Analysis 1	Analysis 1	Analysis 1	Analysis 2	Analysis 2	Analysis 2
Bromophos-ethyl	< 10	120	26.8	< 10	75.3	56.5
Carbophenothion	< 10	84.7	21.7	< 10	93.2	90.2
Chlorfenvinphos (E)	< 10	94.4	nd	< 10	83.5	ND
Chlorfenvinphos (Z)	< 10	110	nd	< 10	80.4	35
Chlorpyrifos	< 10	112	23.6	< 10	81.5	46.2
Chlorpyrifos-methyl	< 10	119	28.7	< 10	94.2	41.7
Demeton-S-methyl	< 10	120	35.4	< 10	93.4	71.9
Diazinon	< 10	114	38.6	< 10	103	59.9
Dichlorvos	< 10	116	43.8	< 10	112	68.2
Dimethoate	< 10	113	27.1	< 10	94.3	41.1
Ethion	< 10	91.5	24.3	< 10	82.4	76.5
Fenamiphos	< 10	87.2	nd	< 10	93.4	87.6
Fenthion	< 10	124	21.8	< 10	79.5	41.8
Malathion	< 10	114	25.8	< 10	88.2	46.4
Azinphos Methyl	< 10	35.3	22.4	< 10	90.5	63.8
Monocrotophos	< 10	74.9	nd	< 10	71.5	59.8
Parathion	< 10	116	27.6	< 10	81.8	37.2
Parathion-methyl	< 10	135	37.5	< 10	95.4	43.5
Pirimphos-ethyl	< 10	106	21.0	< 10	81.6	32.1
Prothiofos	< 10	102	27.9	< 10	81.8	59.1
% Recovery of						
DEF surrogate	118	111	25.9	81.4	75.4	52.7

Samples were extracted as received in the first analysis. Samples were air-dried prior to extraction in the second analysis. nd = not determined

Appendix H – Peer Review Report (Dr Stuart Simpson, CSIRO)

Centre for Environmental Contaminants Research

CSIRO Land and Water New Illawarra Road, Lucas Heights Private Mail Bag 7, Bangor, NSW 2234, Australia Telephone: (02) 9710 6830 Fax: (02) 9710 6807 Email: Stuart.Simpson@csiro.au

June 8, 2007

Dr Carsten Matthai URS Australia Pty Ltd Level 3, 116 Miller Street North Sydney, NSW 2060

Dear Carsten,

Re: CSIRO Review of Q27/2006 Sediment and Antifoul Monitoring Program, Stage 2 -Antifoul Study

I offer the following comments on the Draft Report supplied by you on June 8. In general, there were some major analytical difficulties that limit the value of much of the data for organic contaminants (other than PAHs and TBT). The major outcome of the study is that the concentrations of contaminants of potential concern are low, except in the vicinity of the marinas. Improved management of marina practices, especially dry-docks for boat maintenance (paint removal and application), is therefore of great importance to limits future impacts. A review of regulations (especially those of the European Union and North America) on the use of anti-fouling paints would be useful and recommendations be made to limit use of substances for which there is now (after some years of use) evidence of ecological effects.

Major points

1. The sampling plan and implementation appeared adequate.

2. There are some serious problems with the analyses of many of the organic contaminants undertaken for this assessment. Suitable analytical results are presented for PAHs. The analytical method validation-data (spike-recoveries etc) for TBT and the 'organic boosters' should be discussed in the report.

For the organic OCs/OPs/PCBs contaminants the following comments are made: (i) the 0% recoveries for analytes (matrix spike-recoveries etc) achieved by the analytical laboratory invalidates the use of this data in the assessment, (ii) the low recoveries for analytes (e.g. <75%), when achieved, result in great uncertainty in this data. As an "Assessor for NATA" I recognize that achieving recoveries of greater than 80% is not routinely feasible for analyses of many organic contaminants in sediments. However, in stating this, the sediments collected for this assessment were not unusual in nature and much better recoveries for OCs, OPs and PCBs would have been expected. The suitable recoveries in the method blanks and LCS (70-118%) do not validate the use of this data. Although not a common practice for analyses of organic contaminants, for other analytes the measured concentration is sometimes corrected for the %-recovery (i.e. as for analyses by standard additions, $0.5 \mu g/kg$ with 70% spike-recovery = $0.7 \mu g/kg$ reported concentration). If the spike-recoveries are only 10%, then the analyte concentration in the sample may have been 10 times greater than that reported.

3. Better management of the sample analyses could have been undertaken. The analytical laboratory should not have continued with the analyses of samples when the spike-recoveries did not meet the method specifications (and the method specifications should have been for recoveries >70%). A suitable approach for the laboratory (following observation of poor spike-recoveries) would have been to refine the test methods (including changing staff if required) or changing to a different analytical method (Noted: method refinement was made by the laboratory in attempt to achieve adequate recoveries). A suitable approach for the project management would be determining whether another qualified laboratory could achieve the QA/QC required. With both these options failing, analyses of the entire set of samples should not have proceeded, but perhaps a scaled-back set of samples could have been analysed (e.g. only those at the marina's where OC/OP/PCB concentrations may have been expected to be detectable).

Recommendations Section

- 1. The TBT concentrations were generally low and undertaking depth-coring of sediments to show the concentrations are lower deeper down would not appear to be good use of resources. The organisms being affected by TBT will live mostly in the surface sediments.
- 2. Analytical methods for these analyses must be improved before any further investigations of 'organic boosters' be considered. Any additional study of organic boosters should be limited to the marina's. It is more likely that the concentrations of TBT, heavy metals and the major organics cause toxicity to organisms near the marina's than 'organic boosters' that are currently not detectable.
- 3. The concentrations of mercury (Hg) were low. The ANZECC/ARMCANZ (2000) guidelines are 'trigger values', not effects thresholds, and exceeding a trigger value by a factor of 2-3 is not an immediate cause for concern.
- 4. The recommendation of monitoring of the proposed STP is useful.

Specific Comments:

1. Page 1-3. If possible, it would be useful to show the Hornsby Sewage Treatment Plant (STP) and the Calna Creek STP on the Figure 1 (map).

2. Page 2-4: The method for calculating percent-recovery of "Matrix Spikes" is not correct.

The formula should be: Percent Recovery = $(SX-X)/(S) \times 100\%$ where, SX = concentration measured for the spiked-sample

X = the concentration spiked into the sample (nominal spike concentration is often used for TBT) S = the concentration measured for the sample (not spiked)

3. Page 2-6: A discussion of the data validation for TBT or 'organic boosters' would be useful (given the other analytical problems).

4. Page 2-6: The poor recoveries for organic contaminants (OCs/Ops/PCBs) invalidates the use of this data in the assessment

5. Page 3-3: "The analysis of the four organic booster biocide compounds diuron, ... resulted in all analyte concentrations being reported below the analytical limit of reporting (<0.1 mg/kg) in all four samples. However, inspection of chromatograms revealed low concentrations of diuron in sediments at three of the four sampling locations, with concentrations of 0.009 mg/kg (H37), 0.01 mg/kg (H38), 0.03 mg/kg (H9), and 0.04 mg/kg (QC5 = H9). There was no visible chromatographic peak for diuron in the sediment from sampling location H31 (Refuge Bay) (<0.001 mg/kg)."

As the LOR is not useful, the detection limit (DL) must be quoted here, otherwise the 'low concentrations' being reported can be considered as analytical noise, rather than concentrations. Based on the results presented the DL was <0.001 mg diuron/kg, i.e. approximately $1/100^{th}$ the LOR.

Please clarify.

6. Page 3-3: "Large bivalves shells and shell ... were removed ..." Was this down by hand-picking or sieving the sediments ?

7. Pages 4-1-4-2, "4.2 Potential Sources of TBT to Sediments": The USEPA (2003) has undertaken a review on TBT that should be cited: "Ambient aquatic life water quality criteria for tributyltin (TBT)". USEPA documents are free to download by the public and this document contains a very extensive review of effects. The USEPA review was very thorough. It has been proposed (by CSIRO) to the Department of Environment and Water Resources (DEW) that these guidelines be adopted for TBT in Australia.

8. Page 4-2: "TBT compounds tend to have medium range water solubility and tend to sorb to particulate matter and suspended solids." The phrase 'medium range' does not mean much, so please provide the solubility of TBT (in g/kg).

9. Page 4-4: "The highest mean concentrations of TBT in sediments within the area investigated in the current Antifoul Study (Stage 2) were ..." The 'mean' of what ? The mean of the study area ? If so, please define the study area. Should these study area's should be shown on Figure 1?

According to "• Cowan Creek: 8 sampling locations; Concentrations vary from 1.4-125 µgSn/kg", the TBT concentrations were much higher than these 'means'. Is this correct ?

10. Page 4-4: "Upper Cowan Creek and Berowra Creek sediments display elevated concentrations of inorganic and organic contaminants, …" Providing the site numbers here would be useful to the reader (e.g. Upper Cowan Creek (sites H21) and Berowra Creek (H10) ?)

11. Page 4-4: "...TBT is chemically reactive and therefore mobile and bioavailable to aquatic organisms and fish ..." How can TBT be both 'chemically reactive' (i.e. implies adsorbed strongly to sediments) and 'therefore mobile and bioavailable' ?

12. Page 4-5: "the concentrations of TBT in 2007 are substantially higher compared to the concentrations of TBT in sediments sampled in 1990-1991 (EPA, 1996)." I would not put too much emphasis on the past data for TBT analyses unless the differences are 1-2 orders of magnitude. Sediment-TBT heterogeneity is often high and there is always much uncertainty in TBT analyses.

13. Page 4-5: Given the low TBT concentrations in most of the surface sediments tested, further analyses to show TBT concentrations are low in deeper sediment is of little value.

14. Page 4-9: "At present, no reliable data on the solid phase-dissolved phase partitioning of booster biocides exists. It is therefore difficult to determine if the generally observed lower concentrations in waters in comparison with sediments have to do with the booster biocide compounds' preference towards sorptive partitioning. Gough et al. (1994) have also observed even lower concentrations of Irgarol 1051 in sediments in the Humble Estuary, UK, suggesting that partitioning onto settled or suspended particulate matter may prove to be a critical process in determining the compounds fate in the aquatic environment."

Octonol-water partition coefficient data probably exists with the producers of the products, else they would never have started using these chemicals. Like most organic chemicals, they are likely to be quite 'hydrophobic' and there partition strongly to sediments.

15. Page 4-10: "It should be noted that diuron is no longer approved for use in the UK as an active ingredient in antifouling paints, on any size of vessel, due to its demonstrated toxicity (Konstantinou and Albanis, 2002)."

Why was this decision made ? What other antifouling paints are being banned in countries around the world (e.g. by the European Union) ?

16. Page 4-10: "Diuron concentrations are greater than the concentrations of TBT in corresponding samples". The concentration of TBT-Sn is reported in the current report, not TBT. Therefore the

Regards,

(**Dr**) Stuart Simpson, Principal Research Scientist Centre for Environmental Contaminants Research

References

USEPA 2003a. Ambient aquatic life water quality criteria for tributyltin (TBT) – final. United States U.S. Environmental Protection Agency, Office of Water Report 4304T, EPA 822-R-03-031, Washington, DC, USA, 138 pp..