APPENDIX C

HYDROGEOLOGY AND GROUNDWATER CHEMISTRY DATA

GROUNDWATER TESTING

Attention: Angela Karsch

AMDEL LIMITED 99 Mitchell Road CARDIFF NSW 2285 <u>E-mail To</u>: akarsch@amdel.com cc: enviro_sydney@amdel.com

CERTIFICATE OF ANALYSIS

Report No: S 06043931 sh

Report Date: 4 October 2006

Date Received: 28 September 2006

Date Tested: 28 September 2006

Standing Order: S046575

RESULTS

Sample DescriptionOrder No.Water Samples - 27.9.066E3092

	Thermotolerant Coliforms	Coliforms	E.coli
Sample Description	CFU per 100ml	CFU per 100ml	CFU per 100ml
	M12.2	M12.1	M12.2
SN: HQ1	2,400	3,000	800
SN: HQ2	90 (est)	3,700	90 (est)
SN: HQ3	320	3,000	320
SN: HQ4	60 (est)	2,600	40 (est)

Note: '<' indicates Less than, 'est' indicates Estimate

<u>SELINA BEGUM</u> MAppSci, MAIFST CONSULTANT MICROBIOLOGIST

WORLD RECOGNISED

NATA accredited Laboratory Number 2766 and/or 2142. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced except in full. The data pertains solely to the analytical and sampling procedure(s) used and the condition and homogeneity of the sample(s) as received. The data therefore may not he representative of the lot or batch or other samples. Consequently the data may not necessarily justify the acceptance or rejection of a lot or batch, a product recall or support legal proceedings. It is the responsibility of the client to provide all information relevant to the analysis requested. This report does not imply that Silliker Microtech Pty Ltd has been engaged to consult upon the consequences of the analysis and for any action that should be taken as a result of the analysis.

TGA Licence No: 152612

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025 NATA Accreditation number: 1464 This document may not be reproduced except in full

ANALYTICAL SERVICES DIVISION

ABN 30 008 127 802 Correspondence to: PO Box 331 HUNTER REGIONAL MAIL CENTRE NSW 2310

99 Mitchell Rd CARDIFF NSW 2285 Telephone: (02) 4902 4800 Facsimile: (02) 4902 4899

CERTIFICATE OF ANALYSIS

Cover Page 1

Contents :

1. Cover Pages (3)

Analysis Report Pages
 QA/QC Appendix

J. QA/QC Appendix

4. Additional Reports - External (if applicable)

5. Chain of Custody (if applicable)

<u>Report No.</u>	:	6E3092		D. Chai	11 01	Custody (1	
Attention	:	Mr Phil Clarke					
<u>Client</u>	: : :	Pells Sullivan Meynink P O Box 173 TERRIGAL NSW 22	Pty Ltd 60				
Samples	:	4					
Reference/Order	:	PSM1059.TL1					
<u>Project</u>	:	HORNSBY QUARRY					
Received Samples	:	29/09/06	Instructio	<u>ns</u>	:	27/09/0	6
Date Reported	:	10/10/06					

PLEASE SEE FOLLOWING PAGES FOR METHOD LISTING AND RESULTS

<u>RESULTS</u>

All samples were analysed as received. This report relates specifically to the samples as received. Results relate to the source material only to the extent that the samples as supplied are truly representative of the sample source. This report replaces any preliminary results issued. Note that for methods indicated with "#", NATA accreditation does not cover the performance of this service. Three significant figures (or 2 for < 10PQL) are reported for statistical purposes only. Where "Total" concentrations are reported for organic suites of compounds this is the summation of the individual compounds and the PQL is noted for reporting purposes only. This report has been authorized by the NATA signatories listed in the method descriptions section on the following page.

Anthony Crane Operations Manager

Report No. : 6E3092

Cover Page 2

Please note: Where samples are collected/submitted over several days, the date on which the last samples were analysed or extracted is reported. Unless Ferrous Iron is determined on site, the possibility of a ferrous-ferric ratio change may occur.

<u>Method</u>	Description	Extracted	<u>Analysed</u>	<u>Authoris</u>	<u>ed</u>
E4970	Total Metals by ICP-MS	04/10/06	04/10/06	DLU	093
E4910	Total Metals by ICP-AES	03/10/06	05/10/06	APO	093
E4950	Mercury	04/10/06	04/10/06	DLU	093
E4870	Dissolved Metals by ICP-MS	04/10/06	04/10/06	DLU	093
E2380	Chloride	03/10/06	03/10/06	AGR	101
E2310	Total Alkalinity	03/10/06	03/10/06	AGR	101
E2350	BOD (5)	04/10/06	09/10/06	AGR	101
E2430	Conductivity	03/10/06	03/10/06	AGR	101
E2550	Nitrate-N	05/10/06	05/10/06	AGR	101
E2560	Nitrite-N	05/10/06	05/10/06	AGR	101
E2551	NOX	05/10/06	05/10/06	AGR	101
E2523	Grease and Oil (Gravimetric)	04/10/06	04/10/06	AGR	101
E2690	Total Dissolved Solids	03/10/06	03/10/06	AGR	101
E2740M	Hydrogen Sulphide	06/10/06	06/10/06	AGR	101
E2742	Súlphide (Dissolved)	04/10/06	04/10/06	AGR	101
E2720	Sulphate	03/10/06	03/10/06	AGR	101
E2670	Suspended Solids	29/09/06	29/09/06	AGR	101
E2600	pH	03/10/06	03/10/06	AGR	101
E2330	Ammonia as N	04/10/06	04/10/06	AGR	101

Page1 of3plusCoverPage

	Lab No	E287184	E287185	E287186	E287187	
		HQ1	HQ2	HQ3	HQ4	
Analyte	Sample Id	27.9.06	27.9.06	27.9.06	27.9.06	
	PQL					
E4970 Total Recoverable Metals in Wat	ers					
Aluminium	0.010	0.05	0.01	0.11	0.02	
Arsenic	0.002	nd	nd	nd	nd	
Cadmium	0.0005	nd	nd	nd	nd	
Chromium	0.005	nd	nd	nd	nd	
Copper	0.005	nd	nd	nd	nd	
Lead	0.002	nd	nd	nd	nd	
Manganese	0.005	nd	nd	0.012	nd	
Nickel	0.005	nd	nd	nd	nd	
Zinc	0.010	nd	0.02	nd	nd	
E4910 Total Recoverable Metals in Wat	ers					
Calcium	0.5	29	63	50	50	
Iron	0.05	nd	nd	0.27	nd	
Magnesium	0.5	41	37	54	53	
Potassium	0.5	1.4	2.0	2.4	2.2	
Sodium	0.5	73	59	64	63	
E4950 Total Recoverable Mercury in W	ater					
Mercury	0.001	nd	nd	nd	nd	
E4870 Dissolved Metals in Waters						
Manganese	0.001	nd	0.002	nd	nd	
					_	

PQL = Practical Quantitation Limit LNR = Samples Listed not Received nd = < PQL -- = Not Applicable

Soils Waters Leachates : mg/kg (ppm) dry weight unless otherwise specified : mg/L (ppm) unless otherwise specified in Method Header : mg/L (ppm) in leachate unless otherwise specified in Method Header

Page2 of3plus Cover Page

	Lab No	E287184	E287185	E287186	E287187	
		HQ1	HQ2	HQ3	HQ4	
Analyte	Sample Id	27.9.06	27.9.06	27.9.06	27.9.06	
	PQL					
E2380 Chloride in Water						
Chloride	0.5	69	67	66	67	
E2310 Total Alkalinity in Water						
Bicarbonate as CaCO3	10	240	240	200	200	
Carbonate as CaCO3	10	nd	nd	nd	nd	
Hydroxide as CaCO3	10	nd	nd	nd	nd	
Alkalinity as CaCO3	20	240	240	200	200	
E2350 BOD in Water (5-Day)						
BOD	2	< 2	< 2	nd	< 2	
E2430 Conductivity (uS/cm at 25.0 C)						
Electrical Conductivity	20	780	840	920	920	
E2550 Nitrate as N in Water						
Nitrate as N	0.04	0.97	0.61	nd	nd	
E2560 Nitrite as N in Water						
Nitrite as N	0.02	nd	nd	nd	nd	
E2551 NOX in Water						
NOx	0.02	0.98	0.61	nd	nd	
E2523 Grease & Oil (Hexane)						
Grease & Oil	5	nd	nd	nd	nd	
E2690 Total Dissolved Solids in Water						
TDS	5	370	360	470	460	
POI = Practical Quantitation I imit	Soil	c •	ma/ka (nnm) d	ry waight unla	ss othorwise sr	vacified

rQL = Practical Quantitation Limit LNR = Samples Listed not Received nd = < PQL -- = Not Applicable

Soils Waters Leachates : mg/kg (ppm) dry weight unless otherwise specified : mg/L (ppm) unless otherwise specified in Method Header : mg/L (ppm) in leachate unless otherwise specified in Method Header

Page **3 of** 3 plus Cover Page

	Lab No	E287184	E287185	E287186	E287187	
		HQ1	HQ2	HQ3	HQ4	
Analyte	Sample Id	27.9.06	27.9.06	27.9.06	27.9.06	
	PQL					
E2740M Hydrogen Sulphide in Water						
Hydrogen Sulphide (Calc.)	0.01	nd	nd	nd	nd	
Temperature (Used in calculati	1	20	20	20	20	
E2740 Sulphide in Water						
Sulphide (Dissolved)	0.1	nd	nd	nd	nd	
E2720 Sulphate in Water						
Sulphate	0.5	42	80	160	160	
E2670 Suspended Solids in Water						
Suspended Solids	5	nd	nd	18	nd	
E2600 pH in Water						
рН	0.1	8.1	7.7	8.3	8.3	
E2330 Ammonia as N in Water						
Ammonia as N	0.05	nd	nd	nd	nd	
PQL = Practical Quantitation Limit LNR = Samples Listed not Received	Soil Wa	ls : 1 ters : 1	mg/kg (ppm) d mg/L (ppm) un	ry weight unle lless otherwise	ss otherwise sp specified in M	ecified ethod Header

nd = < PQL -- = Not Applicable

 Img/L (ppm) unless otherwise specified in Method He

 Leachates
 :mg/L (ppm) in leachate unless otherwise specified in Method He

 Refer to Amdel standard laboratory qualifier codes for comments.

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025 NATA Accreditation number: 1464 This document may not be reproduced except in full

ANALYTICAL SERVICES DIVISION

ABN 30 008 127 802 Correspondence to: PO Box 331 HUNTER REGIONAL MAIL CENTRE NSW 2310

99 Mitchell Rd CARDIFF NSW 2285 Telephone: (02) 4902 4800 Facsimile: (02) 4902 4899

CERTIFICATE OF ANALYSIS

Cover Page 1

Contents :

1. Cover Pages (3)

Analysis Report Pages
 QA/QC Appendix

J. QA/QC Appendix

4. Additional Reports - External (if applicable)

5. Chain of Custody (if applicable)

<u>Report No.</u>	:	6E3092		D. Chai	11 01	Custody (1	
Attention	:	Mr Phil Clarke					
<u>Client</u>	: : :	Pells Sullivan Meynink P O Box 173 TERRIGAL NSW 22	Pty Ltd 60				
Samples	:	4					
Reference/Order	:	PSM1059.TL1					
<u>Project</u>	:	HORNSBY QUARRY					
Received Samples	:	29/09/06	Instructio	<u>ns</u>	:	27/09/0	6
Date Reported	:	10/10/06					

PLEASE SEE FOLLOWING PAGES FOR METHOD LISTING AND RESULTS

<u>RESULTS</u>

All samples were analysed as received. This report relates specifically to the samples as received. Results relate to the source material only to the extent that the samples as supplied are truly representative of the sample source. This report replaces any preliminary results issued. Note that for methods indicated with "#", NATA accreditation does not cover the performance of this service. Three significant figures (or 2 for < 10PQL) are reported for statistical purposes only. Where "Total" concentrations are reported for organic suites of compounds this is the summation of the individual compounds and the PQL is noted for reporting purposes only. This report has been authorized by the NATA signatories listed in the method descriptions section on the following page.

Anthony Crane Operations Manager

Report No. : 6E3092

Cover Page 2

Please note: Where samples are collected/submitted over several days, the date on which the last samples were analysed or extracted is reported. Unless Ferrous Iron is determined on site, the possibility of a ferrous-ferric ratio change may occur.

<u>Method</u>	Description	Extracted	<u>Analysed</u>	<u>Authoris</u>	<u>ed</u>
E4970	Total Metals by ICP-MS	04/10/06	04/10/06	DLU	093
E4910	Total Metals by ICP-AES	03/10/06	05/10/06	APO	093
E4950	Mercury	04/10/06	04/10/06	DLU	093
E4870	Dissolved Metals by ICP-MS	04/10/06	04/10/06	DLU	093
E2380	Chloride	03/10/06	03/10/06	AGR	101
E2310	Total Alkalinity	03/10/06	03/10/06	AGR	101
E2350	BOD (5)	04/10/06	09/10/06	AGR	101
E2430	Conductivity	03/10/06	03/10/06	AGR	101
E2550	Nitrate-N	05/10/06	05/10/06	AGR	101
E2560	Nitrite-N	05/10/06	05/10/06	AGR	101
E2551	NOX	05/10/06	05/10/06	AGR	101
E2523	Grease and Oil (Gravimetric)	04/10/06	04/10/06	AGR	101
E2690	Total Dissolved Solids	03/10/06	03/10/06	AGR	101
E2740M	Hydrogen Sulphide	06/10/06	06/10/06	AGR	101
E2742	Súlphide (Dissolved)	04/10/06	04/10/06	AGR	101
E2720	Sulphate	03/10/06	03/10/06	AGR	101
E2670	Suspended Solids	29/09/06	29/09/06	AGR	101
E2600	pH	03/10/06	03/10/06	AGR	101
E2330	Ammonia as N	04/10/06	04/10/06	AGR	101

Page1 of3plusCoverPage

	Lab No	E287184	E287185	E287186	E287187	
		HQ1	HQ2	HQ3	HQ4	
Analyte	Sample Id	27.9.06	27.9.06	27.9.06	27.9.06	
	PQL					
E4970 Total Recoverable Metals in Wat	ers					
Aluminium	0.010	0.05	0.01	0.11	0.02	
Arsenic	0.002	nd	nd	nd	nd	
Cadmium	0.0005	nd	nd	nd	nd	
Chromium	0.005	nd	nd	nd	nd	
Copper	0.005	nd	nd	nd	nd	
Lead	0.002	nd	nd	nd	nd	
Manganese	0.005	nd	nd	0.012	nd	
Nickel	0.005	nd	nd	nd	nd	
Zinc	0.010	nd	0.02	nd	nd	
E4910 Total Recoverable Metals in Wat	ers					
Calcium	0.5	29	63	50	50	
Iron	0.05	nd	nd	0.27	nd	
Magnesium	0.5	41	37	54	53	
Potassium	0.5	1.4	2.0	2.4	2.2	
Sodium	0.5	73	59	64	63	
E4950 Total Recoverable Mercury in W	ater					
Mercury	0.001	nd	nd	nd	nd	
E4870 Dissolved Metals in Waters						
Manganese	0.001	nd	0.002	nd	nd	
					_	

PQL = Practical Quantitation Limit LNR = Samples Listed not Received nd = < PQL -- = Not Applicable

Soils Waters Leachates : mg/kg (ppm) dry weight unless otherwise specified : mg/L (ppm) unless otherwise specified in Method Header : mg/L (ppm) in leachate unless otherwise specified in Method Header

Page2 of3plus Cover Page

	Lab No	E287184	E287185	E287186	E287187	
		HQ1	HQ2	HQ3	HQ4	
Analyte	Sample Id	27.9.06	27.9.06	27.9.06	27.9.06	
	PQL					
E2380 Chloride in Water						
Chloride	0.5	69	67	66	67	
E2310 Total Alkalinity in Water						
Bicarbonate as CaCO3	10	240	240	200	200	
Carbonate as CaCO3	10	nd	nd	nd	nd	
Hydroxide as CaCO3	10	nd	nd	nd	nd	
Alkalinity as CaCO3	20	240	240	200	200	
E2350 BOD in Water (5-Day)						
BOD	2	< 2	< 2	nd	< 2	
E2430 Conductivity (uS/cm at 25.0 C)						
Electrical Conductivity	20	780	840	920	920	
E2550 Nitrate as N in Water						
Nitrate as N	0.04	0.97	0.61	nd	nd	
E2560 Nitrite as N in Water						
Nitrite as N	0.02	nd	nd	nd	nd	
E2551 NOX in Water						
NOx	0.02	0.98	0.61	nd	nd	
E2523 Grease & Oil (Hexane)						
Grease & Oil	5	nd	nd	nd	nd	
E2690 Total Dissolved Solids in Water						
TDS	5	370	360	470	460	
POI = Practical Quantitation I imit	Soil	c •	ma/ka (nnm) d	ry waight unla	ss othorwise sr	vacified

rQL = Practical Quantitation Limit LNR = Samples Listed not Received nd = < PQL -- = Not Applicable

Soils Waters Leachates : mg/kg (ppm) dry weight unless otherwise specified : mg/L (ppm) unless otherwise specified in Method Header : mg/L (ppm) in leachate unless otherwise specified in Method Header

Page3 of3plus Cover Page

	Lab No	E287184	E287185	E287186	E287187	
		HQ1	HQ2	HQ3	HQ4	
Analyte	Sample Id	27.9.06	27.9.06	27.9.06	27.9.06	
	PQL					
E2740M Hydrogen Sulphide in Water						
Hydrogen Sulphide (Calc.)	0.01	nd	nd	nd	nd	L
Temperature (Used in calculati	1	20	20	20	20	
E2740 Sulphide in Water						L
Sulphide (Dissolved)	0.1	nd	nd	nd	nd	L
E2720 Sulphate in Water						L
Sulphate	0.5	42	80	160	160	L
E2670 Suspended Solids in Water						1
Suspended Solids	5	nd	nd	18	nd	
E2600 pH in Water						
рН	0.1	8.1	7.7	8.3	8.3	
E2330 Ammonia as N in Water						
Ammonia as N	0.05	nd	nd	nd	nd	
						L
						L
						1
PQL = Practical Quantitation Limit LNR = Samples Listed not Received	Soil Wa	ls : ters :	mg/kg (ppm) d mg/L (ppm) ur	ry weight unle lless otherwise	ss otherwise specified in M	ecified ethod Header

nd = < PQL -- = Not Applicable Leachates : mg

: mg/L (ppm) unless otherwise specified in Method Hea : mg/L (ppm) in leachate unless otherwise specified in Method Header

Attention: Angela Karsch

AMDEL LIMITED 99 Mitchell Road CARDIFF NSW 2285 <u>E-mail To</u>: akarsch@amdel.com cc: enviro_sydney@amdel.com

CERTIFICATE OF ANALYSIS

Report No: S 06043931 sh

Report Date: 4 October 2006

Date Received: 28 September 2006

Date Tested: 28 September 2006

The data pertains solely to the analytical and sampling procedure(s) used and the condition and homogeneity of the sample(s) as received. The data therefore may not be representative of the lot or batch or other samples. Consequently the data may not necessarily justify the acceptance or rejection of a lot or batch, a product recall or support legal proceedings. It is the responsibility of the client to provide all information relevant to the analysis requested. This report does not imply that Silliker Microtech Pty Ltd has been engaged to consult upon the consequences of the analysis and for any action that should be taken as a result of the analysis.

Standing Order: S046575

RESULTS

Sample DescriptionOrder No.Water Samples - 27.9.066E3092

	Thermotolerant Coliforms	Coliforms	E.coli
Sample Description	CFU per 100ml	CFU per 100ml	CFU per 100ml
	M12.2	M12.1	M12.2
SN: HQ1	2,400	3,000	800
SN: HQ2	90 (est)	3,700	90 (est)
SN: HQ3	320	3,000	320
SN: HQ4	60 (est)	2,600	40 (est)

Note: '<' indicates Less than, 'est' indicates Estimate

<u>SELINA BEGUM</u> MAppSci, MAIFST CONSULTANT MICROBIOLOGIST

WORLD RECOGNISED

NATA accredited Laboratory Number 2766 and/or 2142. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced except in full.

TGA Licence No: 152612

HORNSBY QUARRY WATER QUALITY DATA (SITE 44)

LAB	Chem ID	SITE ID	SPLIT	DATE	Day	Month	Year	FAECAL COLIFORMS (org/100ml)	AMMONIA (mg/L)	NOX (mg/L)	TOTAL NITROGEN (mg/L)	Total Kjeldahl Nitrogen as N	TOTAL PHOSPHORUS (mg/L)	SS (mg/L)	CHL A (ug/L)
AWT		44	0	20/04/2004	20	4	2004	8	0.005	0.005	0.17		0.007	1	
AWT		44	0	19/08/2004	19	8	2004	3	0.005	0.005	0.16		0.01	1	1.9
AWT		44	0	15/09/2004	15	9	2004	2	0.005	0.005	0.17		0.009	1	1.6
ALS	20054420	44		19/10/2005	19	10	2005	0.5	0.02	0.097	0.5	0.5	0.005	3	2.5

Phys Id	SITE ID	SPLIT	DATE	Day	Month	Year	TIME	Depth	TEMPERATURE (C)	CONDUCTIVITY (us/cm)	TURBIDITY (ntu)	DISSOLVED OXYGEN (mg/l)	DISSOLVED OXYGEN (sat)	рН	ALKALINITY (mg/l)	SALINITY (ppt)	WEATHER	WET/DRY
	44	0	19/08/2004	19	8	2004	10.2	Om	11.25	1	0	12.5	114.1	7.95		0.48	sunny	wet
	44	0	19/08/2004	19	8	2004	10.2	2m	11	1	1.4	12.5	114.3	7.96		0.48	sunny	wet
	44	0	19/08/2004	19	8	2004	10.2	4m	10.78	1	1.6	12.7	115.1	7.94		0.49	sunny	wet
	44	0	19/08/2004	19	8	2004	10.2	6m	10.38	1	2	13.2	118.1	7.89		0.49	sunny	wet
	44	0	19/08/2004	19	8	2004	10.2	8m	10.24	1	2.1	12.5	111	7.85		0.5	sunny	wet
	44	0	19/08/2004	19	8	2004	10.2	10m	10.23	1	2	11.7	103.8	7.86		0.5	sunny	wet
	44	0	19/08/2004	19	8	2004	10.2	12m	10.23	1	1.9	11	97.4	7.88		0.5	sunny	wet
	44	0	15/09/2004	15	9	2004	10	13	11.44	1	1.2	8.4	76.8	8.14		0.51	overcast	dry
	44	0	15/09/2004	15	9	2004	10	12	11.44	1	0	8.4	76.7	8.14		0.51	overcast	dry
	44	0	15/09/2004	15	9	2004	10	10	11.43	1	0	8.3	75.9	8.14		0.51	overcast	dry
	44	0	15/09/2004	15	9	2004	10	8	11.57	1	0	9.7	89.8	8.27		0.51	overcast	dry
	44	0	15/09/2004	15	9	2004	10	6	12.32	1	0	10.8	100.7	8.32		0.49	overcast	dry
	44	0	15/09/2004	15	9	2004	10	4	14.74	1	0	10.4	102.9	8.45		0.49	overcast	dry
	44	0	15/09/2004	15	9	2004	10	2	14.85	1	0	10.6	105.1	8.47		0.49	overcast	dry
	44	0	15/09/2004	15	9	2004	10	0	14.87	1	0	10.7	105.7	8.48		0.49	overcast	dry
	44		19/10/2005	19	10	2005	8.3		18.37	1	0	10.6	114.3	8.48		0.51	overcast	dry
	44		19/10/2005	19	10	2005		1m	18.37	1								
	44		19/10/2005	19	10	2005		2m	18.34	1								
	44		19/10/2005	19	10	2005		3m	18.34	1								
	44		19/10/2005	19	10	2005		4m	18.32	1								
	44		19/10/2005	19	10	2005		5m	18.32	1								
	44		19/10/2005	19	10	2005		6m	17.93	1								
	44		19/10/2005	19	10	2005		7m	17.45	1								
	44		19/10/2005	19	10	2005		8m	16.2	1								
	44		19/10/2005	19	10	2005		9m	15.35	1								
	44		19/10/2005	19	10	2005		10m	15.1	1	4.1	11.5	114.1	8.26		0.5		
	44		19/10/2005	19	10	2005		11m	14.69	1								
	44		19/10/2005	19	10	2005		12m	14.46	1								
	44		19/10/2005	19	10	2005		13m	14.23	1								
	44		19/10/2005	19	10	2005		14m	14.1	1								
	44		19/10/2005	19	10	2005		15m	14	1								
	44		19/10/2005	19	10	2005		16m	14	1	10.7							
	44		19/10/2005	19	10	2005		17m	13.97	1	11	5.7	55	8.26		0.48		
	44		19/10/2005	19	10	2005		18m	13.97	1								
	44		19/10/2005	19	10	2005		19m	14	1								

PIEZOMETER

Engineering Consultants Rock - Soil - Water JOB: PSM1059 PROJECT: HORNSBY QUARRY

HOLE NUMBER: PIEZOMETER: COLLAR EASTING: COLLAR NORTHIN COLLAR RL(m): DATUM: AHD	BH HQ1 Vibrating Wire Piezometer Model 1200/700 322916.2 G: 6269635.9 105.4	DRILLING CONTRACTOR: McDermotts RIG: - DEPTH OF HOLE (m): 90.65m BOREHOLE INCLINATION: 60° PIEZO INSTALLATION DATE: 17-18/11/06 SUPERVISED BY: RS/BC					
Tic	k boxes	Complete dimensior	ns if appropriate				
Steel protective		Height of stickup (m)	0				
vell cover							
Concrete colar		Diameter of PVC (mm)	-				
Back fill type: Cement bentonite							
lone							
		 Depth to top of seal 	N/A				
Seal: Bentonite pellets							
Other		 Depth to top of gravel pack 	N/A				
Gravel type: 2-5mm gravel Other			N1/A				
		Depth to top of screen	<u>N/A</u>				
Perforation type: Drill holes Hack saw cuts							
40um machine slots		Depth to base of screen	N/A				
	Mon	Death to be a fair	00.0				
		Depth to base of piezo	RL 27.45m				
		Depth to base of gravel					
	199 <u>5</u> 1, 5 7						
COMMENTS Vibra	ing wire piezometer fully erased in bentonite-cement	grout and buried below gravel road. Wire	s run to edge of road,				
attached photos)	nately 100mm-150mm below surface and are then his	uden in long grass in labeled waterproof c	DINAINER (SEE				

X:\PSM JOBS\1000-1100\PSM1059\Engineering 1 Nov 06\[Piezo1 VWP record.xls]Figure C1

PSM1059: Hornst	oy Quarry									
Vibrating Wire Piezometer Pore Pressure Record										
Borehole HQ1										
Installation down	Installation down hole depth 90m									
Hole azimuth / plu	unge 127°/6	0°	Hole RL	105.4						
Piezo 1	0									
Device specificatio	n : Geotech	nical Systems Mo	del 1200 / 70	00 Vibratir	na Wire					
					. J					
Serial Number		7827			I					
Supplier		Geotechncial System	ms Australia							
Rating		700	kPa							
Factory Zero Reading		8653	Hz2(10-3)							
Pressure Coefficient		0.1398	KkPa/Hz2(10)-3)						
Ambient Temperature		19	С							
Thermal Coefficient		-0.063	kPa/C							
Maximum Pressure		1050	kPa							
Barometric Pressure		1003	mBar							
Operating temperature	Operating temperature range minus 30 to 65									
Field Zero Reading	Field Zero Reading 8653 Hz2 Enter data in valide cells (LISE SAME FORMATI									
· · • • = = • • • • • • • • • • • • • •	Participation for the second s									
Data Record								·		
					Pore Water	Height of		Comments (eg, dry weather, heavy rain, device		
Date	Time	Date/time	Frequency	Deg C	Pressure (kPa)	water (m)	Water RL	playing up)		
17/11/2006	4:30 PM	17/11/2006 16:30	8653	21	-0.1	0.0		Field zero MJF / Rebbeca S		
18/11/2006	9:10 AM	18/11/2006 9:10	4884	21	526.8	53.8	81.2	Reading with piezo on bottom before grouting		
18/11/2006	9:25 AM	18/11/2006 9:25	4879	21	527.5	53.8	81.3	First stage grouting commences		
18/11/2006	9:40 AM	18/11/2006 9:40	4877	21	527.8	53.9	81.3			
18/11/2006	9:55 AM	18/11/2006 9:55	3551	21	713.1	72.8	100.2			
18/11/2006	10:35 AM	18/11/2006 10:35	4682	21	555.0	56.6	84.1			
18/11/2006	11:00 AM	18/11/2006 11:00	4706	21	551.7	56.3	83.8			
18/11/2006	11:15 AM	18/11/2006 11:15	4712	21	550.8	56.2	83.7	Second stage grounting commences		
18/11/2006	12:05 PM	18/11/2006 12:05	4782	21	541.0	55.2	82.7			
18/11/2006	12:25 PM	18/11/2006 12:25	4835	21	533.6	54.5	81.9			
20/11/2006	10:43 AM	20/11/2006 10:43	4964	21	515.6	52.6	80.1			
20/11/2006	10:59 AM	20/11/2006 10:59	4964	21	515.6	52.6	80.1			
20/11/2006	11:15 AM	20/11/2006 11:15	4964	21	515.6	52.6	80.1			
20/12/2006	4:00 PM	20/12/2006 16:00	5015	21	508.5	51.9	79.3	Reading 1 month after installation		

VIBRATING WIRE PIEZOMETER

MODEL 1200

The Geotechnical Systems Vibrating Wire Piezometer has been designed to remotely measure fluid pressures in earthen masses.

APPLICATIONS

Pore pressure measurement in fully and partially saturated soils in compacted fills, embankments boreholes and standpipes.

OPERATING PRINCIPLE

Geotechnical Systems Vibrating Wire Piezometers are based on the simple principle of resonance. The instrument consists of a vibrating wire element connected to a sensitive diaphragm. Electromagnetic coils located nearby 'pluck' the wire causing it to vibrate at its natural resonant frequency.A change in pressure causes a deflection of the diaphragm that in turn alters the tension in the wire and the resonant frequency.

The electromagnetic coils are used to convert this frequency change into an electrical output with the same frequency as that of the wire. For each frequency there is a corresponding pressure. Unlike conventional strain gauges, the vibration frequency in a Vibrating Wire Piezometer is not affected by changes in lead wire resistance. This means water penetration, temperature variations and contact resistance do not affect the output signal. Geotechnical Systems' Vibrating Wire Piezometers also offer excellent zero stability. The piezometer is read using a digital readout unit model 9120 or a data logger model 9125. Readings can be in either frequency squared or period. Calibration data is provided with each instrument to permit the calculation of pore pressure.

The piezometer is fabricated from stainless steel components, selected to minimise thermal effects and electron beam welded together to ensure a hermetically sealed cavity for the vibrating wire element. The vibrating wire element is held in place using an extremely high pressure swaging technique. Each piezometer is laser marked with serial numbers and pressure ratings. A variety of filter permeabilities is available to meet different application requirements. The standard filter size is 40 micron pore diameter.

GEO TECHNICAL SYSTEMS AUSTRALIA PTY. LTD.

Specialists in Geotechnical Instrumentation

PTY. LTD. ACN 006 720 887 ABN 28 006 720 887

SPECIAL FEATURES

- Long term stability
- High resolution
- Remote readout capability
- Very sensitive

- o Hermetically sealed
- o Stainless steel construction
- o Rugged construction
- o Not affected by long cable lengths

SPECIFICATION	Vibrating Wire Piezometer	Model 1200				
Pressure ranges (kPa)	250,350,700,2000,3500,5000					
Over range	1.5 x rated pressure					
Resolution	0.025% full scale					
Accuracy	$\leq \pm 0.5\%$ full scale					
Operating temperature	-20 to +65 degrees C					
Filters sintered stainless steel	0.5 and 40 micron					
Dimensions	22mm diameter, 136mm length					
Weight	0.2 kg					

PERFORMANCE

Each piezometer is extensively tested over its working range prior to shipment.

Individual calibration data sheets are supplied with each piezometer. Geotechnical Systems calibration equipment is traceable to international standards.

COMPATIBILITY

The Geotechnical Systems Vibrating Wire Piezometers are compatible with most commercially available readout units. They require low voltage square wave excitation with swept frequency. Please contact the factory if in doubt.

ORDERING INFORMATION

When ordering Geotechnical Systems Vibrating Wire Piezometers, please specify the following.

- 1. Model number and pressure range.
- 2. Cable length (allow 2% extra).
- 3. Whether thermistor option is required.
- 4. Whether detailed calibration certificate is required.

Because Geotechnical Systems is continually improving its products and processes, information contained within this brochure is subject to change without notice.

Because Geotechnical Systems is continually improving its products and processes, information contained within this brochure is subject to change without notice.

ABN 28 006 720 887

For more information or to discuss your application, contact...

GEOTECHNICAL SYSTEMS AUSTRALIA PTY. LTD.

Specialists in Geotechnical Instrumentation

Bayswater VIC 3153 Australia Phone +61 3 9720 5950

1/72 Bayfield Road

Fax +61 3 9720 5942 *E-mail* geotech@geotechsystems.com.au