APPENDIX B ENGINEERING PARAMETERS

APPENDIX B

ENGINEERING PARAMETERS

B1. AVAILABLE INFORMATION

Stability analyses undertaken for this study were based on parameters summarised in Table B1.

The values adopted were based on the following:

- 1. Coffey and Partners Report S8463/3-AG "Old Mans Valley Geotechnical Investigations" dated 18 July 1990. This information included laboratory triaxial and direct shear tests which are summarised in more detail in Appendix G.
- 2. UCS and point load testing on samples collected by PSM for this study (refer to Section B2 below).
- 3. Extensive experience and laboratory strength testing of breccia rocks from a gold mine in Central Kalimantan considered similar to those found at the Hornsby Quarry.
- 4. Experience and testing of sandstone in the Sydney region.

TABLE B1 MATERIAL STRENGTH PARAMETERS

		FILLING			BRECCIA SANDSTONE											DEFECTS		
ROCK MASS	EASTERN/ SOUTH WESTERN/ NORTHERN	CRUSHER	SOUTH WESTERN	RESIDUAL	EW	RES/EW	НW	HW/MW	SW/FR	RESIDUAL	EW	RES/EW	HW/MW	SW/FR	MUDDY BRECCIA ZONES	SEAMS IN SW/FR BRECCIA	SHEARS IN MUDDY BRECCIA	
Unit Weight γ (kN/m³)	20	20	20	19.5	19.5	19.5	20	23.5	23.5	19.5	19.5	19.5	24	24	22	-	-	
Substance UCS (MPa)	NA	NA	NA	0.5 to 1	1 to 2	1	1 to 3	2 to 5	3 to 80	0.5 to 1	1 to 2	1	2 to 25	12 to 40	1 to 5	1 to 3	1 to 2	
Design Shear Strength c' (kPa)	10	0 ^{A.}	10	5	20	20	28	75	300	20	75	50	400	1000	35	0	0	
Design Friction Angle \(\psi' \)(deg)	30	35 ^{A.}	30	28.5	25	25	39	40	45	30	25	30	45	45	40	35	28	
Modulus E (MPa)	30	25	30	40	40	40	300	350	1500	50	50	50	800	2000	300	-	-	
Poissons Ratio	0.3	0.35	0.3	0.3	0.3	0.3	0.25	0.2	0.2	0.3	0.3	0.3	0.2	0.2	0.25	-	-	

A. Find values based on back analysis of fill at Cross Section 11 for an assumed FOS of 1.1 (refer to Appendix H).

B2. UCS AND POINT LOAD TEST DATA FOR MUDDY BRECCIA

Lump samples of slightly weathered to fresh and moderately weathered muddy breccia were taken from the quarry to perform UCS (unconfined compressive strength) testing and point load testing. This rock type was tested to supplement the comprehensive testing data available in the Coffey and Partners Report.

TABLE B2
UCS AND POINT LOAD TEST FOR MUDDY BRECCIA

ID	WEATHERING GRADE	SATURATION	WET DENSITY	UCS (MPa)	POINT LOAD AVERAGE (MPa)	RATIO	COMMENT
1	SW/FR	DRY	2.4	13.0	0.43	30.6	UCS failure by axial splitting
2	SW/FR	DRY	2.4	9.8	0.49	20.1	UCS failure by axial splitting
3	SW/FR	DRY	2.3	2.2	0.36	6.3	UCS failure by axial splitting
4	SW/FR	DRY	2.4	5.1	0.53	9.8	UCS failure by axial splitting
5	SW/FR	SATURATED	2.4	5.8	0.43	13.6	UCS failure by axial splitting
6	MW	SATURATED	-	-	0.31	-	UCS sample disintegrated after soaking.
AVERAGE			2.4	7.2	0.44	16.1	

Testing certificates are included as Attachment B1.

B3. TEST PIT SOIL TEST RESULTS

The following soil testing was undertaken on bulk samples collected from testpits.

- 1. Particle size distribution (PSD),
 - undertaken on samples from testpits TP1 (crusher plant area)

TP3 (crusher plant area)
TP4 (south western fill area)
TP6 (south western fill area)
TP8 (above drainage diversion

works)

TP10 (eastern fill area) TP12 (eastern fill area) TP14 (eastern fill area)

- Results are included in Attachment B2.
- 2. Atterberg Limits
 - Undertaken on samples for testpits
 TP3 (crusher plant area)

TP4 (south western fill area)
TP6 (south western fill area)
TP8 (above drainage diversion

works)

TP12 (eastern fill area) TP14 (eastern fill area)

Results are included in Attachment B2.

ATTACHMENT B1 ROCK MATERIAL LABORATORY TEST CERTIFICATES

1/29 Finchley Street, Milton, Qld. 4064 P.O. Box 434, Paddington, Qld. 4064 Telephone: (07) 3217 5535

Facsimile: (07) 3217 5311 Email: aglabs@bigpond.net.au

POINT	LOAD	TEST	REPO)RT
-------	------	-------------	------	-----

Test Method: AS 413 3.4.1

Client: Pells Sullivan Meynink Pty Ltd Report No. 610246-PTL

Sample No.	Client ID	Depth (m)	I _S	I _{S(50)}	Load Direction	*Descriptive
			(MPa)	(MPa)	200.0.200	Term
610246	1	-	0.58	0.55	Irregular Lump	M
610246	1	-	0.34	0.30	Irregular Lump	M
610247	2	-	0.25	0.30	Irregular Lump	M
610247	2	-	0.69	0.67	Irregular Lump	M
610248	3	-	0.35	0.33	Irregular Lump	M
610248	3	-	0.41	0.38	Irregular Lump	M
610249	4	-	0.46	0.46	Irregular Lump	M
610249	4	_	0.62	0.59	Irregular Lump	M

Remarks: The specimens tested as received.

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Sample/s supplied by the client

Page: 1 of 1

This Document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National standards

N ATA Accredited Laboratory Number 9926

Form Number: GT024-5

Authorised Signatory

ames le

J. Russell

Manager

1/29 Finehley Street, Milton, Qld, 4064
P.O. Box 434, Paddington, Qld, 4064
Telephone: (07) 3217 5535

Facsimile: (07) 3217 5311 Email: aglabs@bigpond.net.au

UNCONFINED COMPRESSIVE STRENGTH TEST REPORT

Test Method: AS 1289 6.4.1

Client: Pells Sullivan Meynink Pty Ltd Report No. 610246-UCS

UCS (MPa):	13.0*	9.75*	2.23*	5.14*
Test Duration (Min:Sec):	1:23	2:31	1:30	0:53
	Splitting	Splitting	Splitting	Splitting
Mode of Failure:	Axial	Axial	Axial	Axial
Specimen Dimensions (mm)	60.4 x 72.0	77.6 x 64.5	94.3 x 70.3	41.7 x 55.0
Specimen Length (mm)	119.3	80.6	102.3	63.3
Moisture Content (%):	2.6	3.4	3.8	3.8
Wet Density (t/m ³):	2.37	2.40	2.31	2.40
Description:	-	-	-	-
Depth (m):	-	-	-	-
Client ID:	1	2	3	4
Sample No.:	610246	610247	610248	610249

Remarks: Stored and tested as received. Block samples were supplied by the client and the specimens were cut into rectangular prism.

Sample/s supplied by the client

Test Apparatus: ELE 1000kN Concrete Compression Machine Iment is issued in accordance with Authorised Signatory

Page 1 of 1

This Document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National standards

N ATA Accredited Laboratory Number 9926

Form Number: GT017-5

Manager

J. Russell

ames Kushl

1/29 Finchley Street, Milton, Qld. 4064
P.O. Box 434, Paddington, Qld. 4064
Telephone: (07) 3217 5535

Facsimile: (07) 3217 5311 Email: aglabs@bigpond.net.au

POINT	LOAD	TEST	REPORT
-------	------	-------------	--------

Test Method: AS 413 3.4.1

Client: Pells Sullivan Meynink Pty Ltd Report No. 611168-PTL

Project: PSM1059 Test Date: 7/11/06 to 8/11/06

Report Date: 10/11/06

Sample No.	Client ID	Depth (m)	I _S (MPa)	I _{S(50)} (MPa)	Load Direction	*Descriptive Term
611168	5	-	0.41	0.48	Irregular Lump	M
611168	5	-	0.31	0.37	Irregular Lump	M
611169	6	-	0.32	0.31	Irregular Lump	M
611169	6	-	0.32	0.30	Irregular Lump	L

Remarks: The specimens tested after 24 hours soaking in water.

*EL: Extremely Low, VL: Very Low, L: Low, M: Medium, H: High, VH: Very High, EH: Extremely High

Sample/s supplied by the client

Page: 1 of 1

This Document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National standards

N ATA Accredited Laboratory Number 9926

Form Number: GT024-5

Authorised Signatory

Tames Lustes
J. Russell

Manager

1/29 Finchley Street, Milton: Qld, 4064
P.O. Box 434; Paddington, Qld, 4064
Telephone: (07) 3217 5535

Facsimile: (07) 3217 5311 Email: aglabs@bigpond.net.au

LINCONFINED	COMPRESSIVE	STRENGTH	TEST REPORT
ONCONTINED	COMPRESSIVE	SINCINGIA	IESI KEPUKI

Test Method: AS 1289 6.4.1

Client: Pells Sullivan Meynink Pty Ltd Report No. 611168-UCS

Project: PSM1059 Test Date: 7/11/06 to 9/11/06

Report Date: 10/11/06

Sample No.:	611168
Client ID:	5
Depth (m):	-
Wet Density (t/m³):	2.30
Moisture Content (%):	1.0
Specimen Length (mm)	66.7*
Specimen Diameter (mm)	52.9 x 59.6
Mode of Failure:	Axial
	Splitting
Test Duration (Min:Sec):	2:05
UCS (MPa):	5.77*

Remarks: Stored and tested after 24 hours of soaking in water.

Sample/s supplied by the client Test Apparatus: ELE 1000kN Concrete Compression Machine

Page 1 of 1

This Document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National standards

N ATA Accredited Laboratory Number 9926

Form Number: GT017-5

Authorised Signatory

J. Russell

Manager

ATTACHMENT B2 SOIL MATERIAL LABORATORY TEST CERTIFICATES

test results

client: PELLS SULLIVAN MEYNINK PTY LTD.

job no:

LCOVLAB4329BH

principal:

project: LABORATORY TESTING - PSM 1059.TF2

laboratory:

SYDNEY

location: HORNSBY QUARRY

report date:

October 24, 2006

test report no. : BH 1

est procedure.: A\$1289.3.6.1	·	test date : 2	23/10/06
SAMPLE	A.S SIEVE SIZE (DIAMETER)	PERCENT PASSING	
IDENTIFICATION	(mm)	(%)	
P 1/S 1 (mixed fill) rdney Lab No. 610021	150.0	100.0	
	75.0	100.0	
	63.0	100	
	53.0	100	
	37.5	97.5	
	26.5	92.4	
	19.0	88.7	
	13.2	85.7	
	9.5	81.8	
	6.7	78.6	
	<i>4.75</i>	75.3	
	2.36	68.3	
	1.18	58.6	
	0.600	52.3	
	0.425	47.5	
	0.300	37.1	
	0.150	24.8	
	0.075	19.8	
			Page 1 of 2

remarks: Sample received from the Client on the 16/10/06

except in full.

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced

NATA Accredited Laboratory No. 431

Approved Signatory:

Garry K Collins Specialised Testing Manager

ра	art	icle		siz	e	di	st	ri	bı	u1	tic	or	1										••••	<u></u>		•				,2,0		1003	ĺ
proj	cipal : ect :	PELLS LABOR HORNS	ATO	RY T	EST						÷2									lab rep	no : orato ort o	ory :	:		SYL	ONE obei	Y	132 <u>!</u> 1, 20	9BH 006				
sam	ple no	dure : : entifica	610	0021			ixed	fille	d)												dep	oth :		·	-								Form Number L
		A	.S. s	ieve s	size								Ç	En 04 .	300	425 um	25 G		1.18 mm		- 2.36 mm	1 75 mm	9 7 W	9.5 mm	13.2 mm	19 mm	- 26.5 mm	37.5 mm	- 53 mm	75 mm	150 mm		Form Number L1.8R2 Version 6.0
	100				\overline{T}	П		1								- 1										- 1	1					100	
	90																										/					90	
	80																										+					80	
	70																					_										70	
size	60																		/													60	
percentage finer than size	50																															50	
tage fir	40																															40	
percer	30													/																		30	
	20						12-21						_	/																		20	
	10																															10	
																																0	
	0.0	01				0.0	i			0.0	05	Ο.		artic	le s	ze	- n	1. nillim		es				1)					10	00	J	
		0.0	02 I	~~~~~		sil	+	************	•••••••	C).06 T	3				and				2.0 I)			~~	avel	************		***************************************	60 I	************			
		clay	1	fine		med	5.4		coar	se		fin	ne			diu	m	со	ars	е	fi	ne			diu	- 1	C	oars	e	cobl	oles		
Atte	erberg	Limit	:																T	clas	ssific	atio	n :										1
	d limit		%		•												_	ethod	d														10,000
plas	tic lim	it	%		_			story	nat air			ate		1	y sie et sie		_																Control of court accommon ty acc
plas	ticity i	index	%					e His	ove			, ,		1	ear																		
	ar shri		%		-			Sample History	ove		irieC	ا ب ا			ould umbi		• [ım														1
natu	ıral mo	oisture —	%						Jui	G1			<u> </u>	cu	rling		[

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full.

NATA Accredited Laboratory Date: No. 431

Approved Signatory:
Garry K Collins
Specialised Testing Manager

22/10/0

test results

PELLS SULLIVAN MEYNINK PTY LTD. client :

job no:

LCOVLAB4329BH

principal:

project: LABORATORY TESTING - PSM 1059.TF2

laboratory: report date: SYDNEY

location: HORNSBY QUARRY

test report no.: BH 3

October 24, 2006

SAMPLE	A.S SIEVE SIZE (DIAMETER)	PERCENT PASSING	
IDENTIFICATION	(mm)	(%)	
P 3/S 3 (mixed fill) ydney Lab No. 610023	150.0	100.0	
yuney Lab No. 010023	75.0	100.0	
	63.0	100	
	<i>53.0</i>	96.2	
	37.5	95.4	
	26.5	94.3	
	19.0	91.7	
	13.2	81.9	
	9.5	72.6	
	6.7	66.1	
	4.75	60.2	
	2.36	48.4	
	1.18	38.6	
	0.600	31.0	
	0.425	27.9	
	0.300	24.7	
	0.150	19.5	
	0.075	16.1	
			Page 1 of 2

remarks: Sample received from the Client on the 16/10/06

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full.

NATA Accredited Laboratory No. 431

Approved Signatory:

Garry K Collins Specialised Testing Manager

Date:

Unit 8, 12 Mars Road, Lane Cove West, NSW, 2066

pai	rti	cle	9 8	siz	e	d	is	tr	ib	u	ti	or	1	&	а	tt	erk	Эе	erg	liı							<u> </u>	9911		
client : princip project location	al:		RATO	RY T	TEST	ring					F2								repo	no: ratory rt dat repor	e :		SYD	NE) ber	Y	329B 200				
test pro sample sample	no:		616	0023	?					3.4.	1,3	.6.1								depth	ı:		-							בייון אמווטפו ב
		A	S. s	ieve	size						-	75 um	(!	un og i	300 um	425 um	E 000	1.18 mm	2.36 mm		4.75 mm	9.5 mm	13.2 mm	19 mm	- 26.5 mm	37.5 mm	95 mm		190 mm	CONTRACTOR CONTRACTOR
100	°E	, suga u Zi e				Ш				1										× .:.									100	ľ
90	٥											-					_			-									90	
86	۰E																						$/\!\!/$						80	
70	٥																						-						70	
size 60	٥																				\mathbb{Z}								60	
percentage finer than size	٥																			\angle									50	
age fine	٥																												40	
percenta S	,																/												30	
20	E									-																			20	
	F																			•••••										
10																													10	
	0.00			-		0.0)1				.05	0.		article	e size	· 	1. millim					1	5	-1	-			100	1 0	
	000000000000000000000000000000000000000	O.C clay		fine			ilt dium	1	CO	arse	0.06	6 fin	ie		san medi		со	ars	2.0 e	fine		-	avel ediur		ÇO	arse	60 c	obbles		
Atterb	erg L	imit	:															T	class	sificat	ion :		_							1
liquid li	imit		%		3	38											flethor	,												
plastic	limit		%		2	3		tory	na	atura r dri		ate [sievi siev		oxdot													
plastici			%			15		Sample History	OV		ea drie	i d ľ			ar SI		age <i>50</i> m													
linear s natural			% %		9	.5 -		Samp	ot	her					nbin															

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full.

NATA Accredited Laboratory Date No. 431

Approved Signatory:

Garry K Collins
Specialised Testing Manager

test results

client: PELLS SULLIVAN MEYNINK PTY LTD.

job no:

LCOVLAB4329BH

principal:

project : LABORATORY TESTING - PSM 1059.TF2

laboratory:

location: HORNSBY QUARRY

report date:

October 24, 2006

test report no. : BH 4

st procedure · AS1289.3.6.1

SYDNEY

est procedure: AS1289.3.6.1		test date :	23/10/06	
SAMPLE	A.S SIEVE SIZE (DIAMETER)	PERCEN PASSIN	T G	
IDENTIFICATION	(mm)	(%)		
P 4/S 5 (mixed fill) Sydney Lab No. 610024	150.0	100.0		
yuncy 245 No. 070024	75.0	80.6		
	63.0	80.6		
	53.0	78.2		
	37.5	71.5		
	26.5	67.8		
	19.0	64.6		
	13.2	60.9		
	9.5	58.9		
	6.7	56.8		
	4.75	<i>55.1</i>		
	2.36	48.9		
	1.18	42.4		
	0.600	36.4		
	0.425	33.4		
	0.300	29.7		
	0.150	23.3		
	0.075	19.2		

Page 1 of 2

remarks: 1. Sample received from the Client on the 16/10/06

2.Sample did not meet Minimum Mass of Sub-sample requirement as per AS1289.1.1 Section 5.7 Table 1

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full. except in full.

NATA Accredited Laboratory No. 431

Approved Signatory:

Garry K Collins Specialised Testing Manager

Unit 8, 12 Mars Road, Lane Cove West, NSW, 2066

pa	art	icle	9 \$	Siz	ze	C	lis	tr	ib	u	ti	on	1	&	a	tte	erb	е	rg	lir								2) 9911	
proje	ipal:	PELLS LABOF HORN	RATO	DRY	TES	TIN					F2								repoi	o: ratory rt date repor	е:	.:	S!	YDN	ΕY	432: 4, 20			•
samp	ole no	dure : : entifica	61	002	4					3.4.	. 1,3.	.6.1		_					•	depth	:		-						
		A	S. s	ieve	size	e						_ 75 um	100	E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300 um	- 425 um		1.18 mm	- 2.36 mm		- 4.75 mm	- 6.7 mm	- 9.5 mm	13.2 mm	19 mm -	- 37.5 mm	– 53 mm	75 mm	EE 061
1	00									Ŧ		<u> </u>				-		ļ	+										100
	90								+				_																90
	80																												80
	70																									/			70
size ,	60																												60
ner thar	50																			/									50
percentage finer than size	40																/												40
percer	30														/														30
	20												_																20
	10																												10
	0.0	01									.05	0.1					1.0						10					100	0
	0.0		002			Ο.	.01				0.06			article	size	- r			2.0				10				60		
		clay		fine			silt edium	i	coa			fin	е	- 1	sanc iediu		coa	rse		fine			grav nedi			coars		cobbles	
Atte	rberg	Limit	:			_										_		1	class	ificati	on :								
liquio	l limit	:	%			40								Prepa	ratio	on M	ethod												
plast	ic lim	it	%			25		tory				ate []	dry s		- '													
	icity i		%			15		Sample History	1	dri en	ea dried	L d F	 	Linea Moul			nge mn												
		nkage pisture	%			7.0 -		Samp		ner				crum	bing			//										ass of n 5.7 Tai	hie 1

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full.

NATA Accredited Laboratory No. 431

Approved Signatory:

Garry K Collins Specialised Testing Manager

test results

client : PELLS SULLIVAN MEYNINK PTY LTD. job no:

LCOVLAB4329BH

principal:

laboratory:

SYDNEY

project: LABORATORY TESTING - PSM 1059.TF2

report date:

October 24, 2006

location: HORNSBY QUARRY

test report no.: BH 6

est procedure.: AS1289.3.6.1		test date :	23/10/06
SAMPLE	A.S SIEVE SIZE (DIAMETER)	PERCEN PASSIN	IT G
IDENTIFICATION	(mm)	(%)	
	,,		
P 6/S 7 (mixed fill) ydney Lab No. 610026	150.0	100.0	
	75.0	76.6	
	63.0	70.3	
	53.0	64.9	
	37.5	59.3	
	26.5	54.0	
	19.0	52.3	
	13.2	51.1	
	9.5	50.0	
	6.7	49.3	
	4.75	48.4	
	2.36	43.7	
	1.18	35.7	
	0.600	29.0	
	0.425	25.5	
	0.300	21.9	
	0.150	16.1	
	0.075	12.3	
			Page 1 of 2

remarks: 1.Sample received from the Client on the 16/10/06

2. Sample did not meet Minimum Mass of Sub-sample requirement as per AS1289.1.1 Section 5.7 Table 1

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full. except in full.

NATA Accredited Laboratory No. 431

Approved Signatory:

Garry K Collins Specialised Testing Manager

Collins

part	ticle	9 S	iz	е	d	ist	tri	ib	u	Iť	ic	n		&	at	tt	eı	rbo	erg	, li	m	it	S							
client :	PELLS	SULI	ΙVΑN	I MI	ΕΥΛ	IINK .	PTY	LI	TD.										job	no :			L	co	VLA	B43	329B	Н		
principal	:																		labo	orator	y :		S	YDI	NEY	•				
project :	LABOR	ATO	RY TI	ES7	ING	7 - PS	М	105	59. 7	TF2	•								repo	ort da	te:		0	cto	ber :	24,	200	6		
location	HORNS	SBY (QUAR	RY															tes	repo	rt no).:	B	H 6						
test proc				3.1.	.2,3	3.2.1	3.3	3.1,	3.4	.1,	3.6	5. 1								dept	h :		-							
sample n			7026	. 07	,																									
sample id	Jenunca	LIOIT.	176/	37	(n	nixea	TIII	9 <i>a)</i>			-		_		_	_	_				_	_	_	=	_	_	_			- 1
	A	.S. s	ieve s	ize							75 um	; >	150 um		300 um	425 um	600 um	1.18 mm		7.30 MM	4.75 mm	7 mm	9.5 mm	13.2 mm	9 mm	E G	E 6			
											_	•	7		ဗ္ဗ	42	8	1.	c	ار ک	4.7	6.7	တ်	13.	19	26.5	37.5	75	, C	5
100																				ļ				1	<u>. L</u>	<u> </u>			<u>.</u>	100
				\parallel												-						1								
90				\blacksquare	\blacksquare						\rightrightarrows		#			F	-												\bot	90
				\pm					+								-													
80				#	#			_	_	#			+		<u> </u>						+									80
				Ħ						_			+		-									-	-	-				
70				\pm									\pm								+	Ŧ						/		70
a .				\pm					+												\pm							/		
. <u>š</u> 60			_	\pm	#		+		+	\pm			+		+		-				+	+	-		-	1				60
percentage finer than size				\prod				1														\pm	\pm			/				
ner t 20					₩				1				Ŧ								_									50
ij 96 40											\exists		+										-		-					40
enta				\parallel																		+								10
g 30					Ш		Ξ		1						1															30
					+				=							/														
20				+	++		+	1	+		H		+		/		-						-	-	-	+				20
				#			-	_	-						-	-						-	-			-	-			-
10				\blacksquare			Ŧ		#		Ī		+	-	-															10
					\coprod				+				‡		+											E				_
0.	.001				0.0)1		1	C	.05	5	0.1			1	1		1.0		<u> </u>		<u> </u>	10		L	<u></u>	<u> </u>	<u> </u>	100	0
	0.0	റാ								0.0	٦ <i>e</i>	1	par	ticle	size	-	mill	imetr	es 2.0	ı								60		
		<u> </u>		**********	s	ilt				U.(sanc	i			2.0 	•			gra	vel				···I	hbl	
	clay	1	fine		me	dium	T	coa	arse			fine		n	nediu	ım		coar	se	fin	е	Г	ned	lium	1	coa	arse		bbles	
A4: :																			clas	sifica	tion	:								
Atterber	g Limit	;					r	r					-1																	
liquid lim	it 	%	Not	Obi	tain	able								Prepa				hod												
plastic lir	mit	%	No	on F	las	tic	ځ	na	atui	al s	sta	te	١,	dry s																
plasticity	index	%	Not	ОЬ	tain	able	History		r dı	ied			ŀ⊢	wet s L inea			ا age	• · · · · ·												
linear sh	rinkage	%	Not	Obi	tain	able	Sample	٥١	/en	dri	ed	\boxtimes		Moul			_	mm												
natural m		%					San	ot	her				П	crum curlir	-	l			Note:											hla 1
		o to		1"	arat		<u> </u>							arad		thic	_		SUD-S	<u>2</u> ampi	e as	per	AS	120	59. 1		sect	ion t	.7 Tal	ne I

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full.

NATA Accredited Laboratory No. 431

Approved Signatory:

Garry K Collins
Specialised Testing Manager

e: **23/10/06**

test results

client : PELLS SULLIVAN MEYNINK PTY LTD. job no:

LCOVLAB4329BH

principal:

project: LABORATORY TESTING - PSM 1059.TF2

laboratory: report date: SYDNEY

location: HORNSBY QUARRY

test report no. : BH 8

October 24, 2006

test procedure: AS1289.3.6.1		test date :	23/10/06
SAMPLE	A.S SIEVE SIZE (DIAMETER)	PERCENT PASSING	T
IDENTIFICATION	(mm)	(%)	
	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
TP 8/S 9 (mixed fill) Sydney Lab No. 610028	150.0	100.0	
	75.0	87.6	
	63.0	87.6	
	53.0	87.6	
	37.5	80.8	
	26.5	76.2	
	19.0	73.0	
	13.2	70.7	
	9.5	68.4	
	6.7	66.1	
	4.75	63.6	
	2.36	53.2	
	1.18	38.9	
	0.600	28.7	
	0.425	24.7	
	0.300	20.6	
	0.150	15.0	
	0.075	11.8	
			Page 1 of 2

remarks: 1.Sample received from the Client on the 16/10/06

2. Sample did not meet Minimum Mass of Sub-sample requirement as per AS1289.1.1 Section 5.7 Table 1

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full. except in full.

NATA Accredited Laboratory No. 431

Approved Signatory:

Garry K Collins Specialised Testing Manager

pa	rti	cle	9 8	siz	ze) (di	st	tri	b	u	ti	on		&	a	tt	er	be	erç	j li	im	it	S]
client	oal:	PELLS																		lab	no :	•		s	YDΛ	ΙΕΥ		29BI				
projection location							VG	- PS	M 1	05	9.TI	F2								-	ort d t rep		o. :		ctob H 8	er 2	24, 2	2006	9			
test p				128: 002:		1.2	2,3.	2.1,	3.3	.1,3	3.4.	1,3	.6.1			_				•	dep	th :		-			_					Form Nun
sampl						9	(m	ixed	fille	ed)																						nber L1
		Α	.S. s	ieve	siz	e					-		75 um	150 um		300 um	425 um	<u>E</u>	1.18 mm		2.36 mm	4.75 mm	6.7 mm	9.5 mm		19 mm	26.5 mm	7.5 mm 53 mm	75 mm	1		Form Number L1.8R2 Version 6.0
											-i		i i			()	4 ,	.			7	4	. ⊥	ъ 			9 ; ∐	ر ا				on 6.0
10)0 F						H			-	Ŧ													T						/	100	
9	0	_						-																					/		90	
ε	30								-	+																					80	
7	, ₀								-										#												70	
92 e	50																														60	
than si	ŀ																							+								
e finer	i0										=								#	1											50	
percentage finer than size	ю																		/												40	
ber 3	30						Ħ									+		/	+												30	
2	20								-							/															20	
1	۰																														10	
	Į						_																								0	
	0.00					C	0.01	1				05	0.1		rticle	size	: -		1.0 metr					10						ÒO		
	1	0.0 clay	002				sil	t			(0.06				sano	1			2.0)			grav	⁄el			6	o cot	bles		
	Ĺ		1	fine		n	ned	ium		coa	rse		fine) 	r	nedi	um		coars	se	fir	ne		med	ium		coa	rse		·····		ĘF1
Atterb	erg	Limit	:																	clas	ssific	ation	:									MALL (C
liquid	limit		%	No	ot O	bta	ina	ble			*		ata C	- 1	Prep				od													Lourey
plastic			%		Non				story		drie		ate [- 1	dry s																	PROTECUI
plastic			% 	-	ot O		_	····-	Sample History		en d		d [2	- I	Linea Mou			age	mm													nics rty
linear natura			% %	No	ot O	bta -	ina	ble	Sam	otl	her			ار	crum	bing				Note											L.J	רטר ז אושרוז (כן בסוופץ שפסנפטוווווכא רוץ בנס - בטטס
									Ш									<u> </u>		Sub-	Samp	ie as	s pe	r AS	128	<u>9. 1</u>	<u>. 1</u> S	ectio	on 5.	/ fa	ole 1	_ §

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full.

NATA Accredited Laboratory No. 431

Approved Signatory:

Garry K Collins
Specialised Testing Manager

23/10/06

23/10

test results

client : PELLS SULLIVAN MEYNINK PTY LTD. job no:

LCOVLAB4329BH

principal:

project: LABORATORY TESTING - PSM 1059.TF2

laboratory: report date: SYDNEY

location: HORNSBY QUARRY

test report no. : BH 10

October 24, 2006

101200 26 1

est procedure : AS1289.3.6.1		test date :	23/10/06		
SAMPLE	A.S SIEVE SIZE (DIAMETER)	PERCEN PASSING			
IDENTIFICATION	(mm)	(%)			
TP 10/S 11 (mixed fill) Sydney Lab No. 610030	150.0	100.0			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	75.0	100.0			
	63.0	100.0			
	53.0	100.0			
	37.5	98.4			
	26.5	92.3			
	19.0	83.1			
	13.2	74.9			
	9.5	70.4			
	6.7	66.3			
	4.75	63.2			
	2.36	56.6			
	1.18	49 .7			
	0.600	43.2			
	0.425	<i>37.9</i>			
	0.300	30.0			
	0.150	20.0			
	0.075	16.2			
			Pé	age 1 of 2	
l I					

remarks: 1. Sample received from the Client on the 16/10/06

except in full.

2. Sample did not meet Minimum Mass of Sub-sample requirement as per AS1289.1.1 Section 5.7 Table 1

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced

NATA Accredited Laboratory No. 431

Approved Signatory:

Garry K Collins Specialised Testing Manager

Date:

Unit 8, 12 Mars Road, Lane Cove West, NSW, 2066

				_					_			_	· · ·									Ph	: (0:	2) 9	91	1 1	000	Fax	k (0	2) 99	11	100
clier		PELLS		_		_						ic	on							job n	o :							329	ВН			
proj		LABOR HORNS					IG - I	PSA	1 10)59.	TF	2								labor repor test i	rt dat	e:	. :	0				, 20	06			
test	_	edure :	AS		9.3.		,										-	•		,	depth	n :		-					_			
sam	ple id	entificat	ion:	TP	10/	S11	l (n	nixe	d fil	led)									_						_							
		A	.S. s	ieve	siz	е						75	E5 6/	- 150 um	<u>م</u>	- 425 um	mn 009 –	1.18 mm	: } :	- 2.36 mm		- 4.75 mm		– 9.5 mm	- 13.2 mm	- 19 mm	- 26.5 mm	- 37.5 mm	– 53 mm	_ 75 mm	- 150 mm	
	100			<u>-</u>	TI	П																	<u> </u>									00
	90																										/					90
	80																		_						/	/						80
	70																							/								70
an size	60																				/											60
percentage finer than size	50																		_													50
centage	40															/																40
ber	30														/																	30
	20												/																			20
	10																															10
	0.0	001				0	.01				0.0	5	0.1				•	1.0				,		10					-1	10	0	0
		0.0	02			·····	***********		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.	.06		artic	ie s	ıze	- m	illimetr		2.0			swarantoown	2.2200000000000000000000000000000000000	***********		*******	******************************	60	ļ	***************************************	
		clay	1	ine		m	silt ediu	m	C	oars	se		fine			and diur	n	coar	se		fine		1	grav med		n	cc	arse	- 1	cobb	les	
— Atte	erbero	Limit :						_			-	•								classi	ificat	ion	:									
	d limi		%			-								1			_	ethod														
plas	tic lim	nit	%			-				natu	ıral	sta	ite 🗌	1 '		ving eving	_	_ _														
plas	ticity	index	%			-			Hist(air d	Irie	t		-		Shri		ge 	1													
linea	ar shri	nkage	%		***	-]	Ē	over		ied		Mo		size		mm			_								_		_	
natu	ıral m	oisture	%			-		ľ	" '	JUIE	71		L	cui	rling			5		ote: S ub-Sa												le 1

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full.

NATA Accredited Laboratory No. 431

Approved Signatory:

Garry K Collins Specialised Testing Manager

test results

PELLS SULLIVAN MEYNINK PTY LTD. client :

project: LABORATORY TESTING - PSM 1059.TF2

job no:

LCOVLAB4329BH

principal:

laboratory:

SYDNEY

location: HORNSBY QUARRY

report date:

October 24, 2006

test report no. : BH 11

SAMPLE	A.S SIEVE SIZE (DIAMETER)	PERCENT PASSING	
IDENTIFICATION	(mm)	(%)	
12/S 12 (mixed fill)			
Iney Lab No. 610031	150.0	100.0	
	75.0	86.6	
	63.0	80.0	
	53.0	76.4	
	37.5	63.2	
	26.5	51.9	
	19.0	47.8	
	13.2	45.0	
	9.5	43.1	
	6.7	40.8	
	4.75	38.3	
	2.36	30.3	
	1.18	23.0	
	0.600	17.3	
	0.425	14.9	
	0.300	12.5	
	0.150	9.1	
	0.075	6.9	

Page 1 of 2

remarks: 1. Sample received from the Client on the 16/10/06

2.Sample did not meet Minimum Mass of Sub-sample requirement as per AS1289.1.1 Section 5.7 Table 1

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full.

NATA Accredited Laboratory No. 431

Approved Signatory:

Garry K Collins Specialised Testing Manager

Date:

client: PELLS SULLIVAN MEYNINK PTY LTD. Job no: LCOVLAB43298H principal: laboratory: SYDNEY report date: October 24, 2006 test report no: BH 171 test procedure: A51289.3.1.2.3.2.1,3.3.1.3.4.1,3.6.1 sample Identification: TP12/S12 (mixed filled) A.S. sieve size B	part	icle	9 8	size) (teik	tri	ibı	ut	ic	on	&	a	tte	erk	Э	erg li	m	it	S	-]
project: LABORATORY TESTING - PSM 1059.172 report date: October 24, 2006 location: HORNSRY QUARRY test procedure: A51289.3.1.2.3.2.1.3.3.1.3.4.1.3.6.1 sample indentification: TP12/S12 (mixed filled) A.S. sieve size S. S	client :	PELLS .	SULI	LIVAN	MEY	/NINK	PTY	LTE).						_		job no :			LC	OVL	AB432	9BH			1
	principal	:															laboratory	<i>י</i> :		SY	DNE	Y				
test procedure : A\$1289.3.1.2.3.2.1,3.3.1,3.4.1,3.6.1 sample no : 610031 sample identification: 7P12/312 (mixed filled) A.S. sieve size	project :	LABOR	ATO	RY TE	STIN	IG - PS	M :	1059	TF:	2							report dat	e:		Oc	tobe	24, 2	006			
80 80 70 80 80 70 80 80 70 80 8	location :	HORNS	BY	QUARR	?Y												test repor	t no	. :	ВН	11					ļ,,
80 80 70 80 80 70 80 80 70 80 8	•				. 1. 2	,3.2.1	,3.3	3.1,3	.4.1	,3.	6.1						depth	١:		-						orm N
80 80 70 80 80 70 80 80 70 80 8	•						_																			umber
80 80 70 80 80 70 80 80 70 80 8	sample la	entificat	ion:	TP12/	/\$12	? (mi)	red	filled	<u>/</u>	-						_		_	_		_					1.8
80 80 70 80 80 70 80 80 70 80 8		Α.	S. s	ieve siz	ze					!		<u>5</u>	- -	E C	5	3 mm	m.	mm c	, m	E C	1 E	E 5	3 mn	E C	Ē	72 Ver
80 80 70 80 80 70 80 80 70 80 8			-							r		12	30	42	8	1.18	2.36	4.7	9	9, 5	3 =	26.5	બેં	7,	<u> </u>	sion (
90 80 70 60 60 40 30 20 10 0.001 0.01 0.05 0.1 particle size - millimetres 0.002 0.06 Clay silt sand coarse fine medium coarse	100	* .			18.1								1	<u> </u>		4	1	1	<u> </u>	[-]	. [9.	<u></u>	ő
80 70 80 70 80 70 80 60 60 60 70 80 60 60 60 60 70 60 60 60 60 6	100									1		-				+										
70 9 60 10 10 10 10 10 10 10 10 10	90							-						-		-		-							90	l
70 9 60 10 10 10 10 10 10 10 10 10													=			+							=		l	
Atterberg Limit: Clay Silt Sand Gravel Cobbles	80						_	-		-			-			+			-				1	/	80	
Atterberg Limit: Clay Silt Sand Gravel Cobbles								-				-		+		+		F					1			
20 10 0.001 0.01 0.05 0.1 1.0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0	70						-									÷		ŧ							70	
20 10 0.001 0.01 0.05 0.1 1.0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0	Φ						+	\pm																		
20 10 0.001 0.01 0.05 0.1 1.0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0	, sis (60																						ŧ		60	ĺ
20 10 0.001 0.01 0.05 0.1 1.0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0	thar 20						+											+							50	
20 10 0.001 0.01 0.05 0.1 1.0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0	iner								Ŧ							-		-			\nearrow				30	l
20 10 0.001 0.01 0.05 0.1 1.0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0	မ် မို့ 40											<u> </u>											+		40	
20 10 0.001 0.01 0.05 0.1 1.0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0	centi						+						\equiv	-					E				#	1==		
Atterberg Limit: liquid limit	ब्रू 30							\pm	1	Ħ						\perp			Ė						30	l
Atterberg Limit: liquid limit						ļ			++	+					_				+		+		+			١
O.001 O.01 O.05 O.1 1.0 10 10 100 particle size - millimetres O.002 O.06 Silt Sand Gravel Cobbles Clay Silt Sand Gravel Cobbles Cobbles Atterberg Limit: Iiquid limit	20									Ħ						1									20	l
O.001 O.01 O.05 O.1 1.0 10 10 100 particle size - millimetres O.002 O.06 Silt Sand Gravel Cobbles Clay Silt Sand Gravel Cobbles Cobbles Atterberg Limit: Iiquid limit																					#		\mp			١
O.001 O.01 O.05 O.06 O.06 O.06 O.06 O.06 O.06 O.06 O.06	10								\pm	Ħ						-							=		10	
O.001 O.01 O.05 O.06 O.06 O.06 O.06 O.06 O.06 O.06 O.06							-	_				-		-		+		+-	-	-	+		+			١
O.002 O.06 Sample did not meet Minimum Mass of	0.0	001			0	.01			0.0	5										10				100		1
Clay Silt Sand Gravel Cobbles fine medium Coarse fine medium Coarse fine medium Coarse fine medium Coarse Atterberg Limit : Classification : Iiquid limit % Not Obtainable Preparation Method dry sieving wet sieving plastic limit % Not Obtainable Iinear shrinkage % Not Obtainable Oven dried Other Other Other Other Note: Sample did not meet Minimum Mass of Note: Sample did not meet Minimum Mass of Note: Sample did not meet Minimum Mass of Note: Sample did not meet Minimum Mass of Note: Sample did not meet Minimum Mass of		0.0	02						0.	.06	p	artici	e size	- 1	nillim	etre							60)		
Atterberg Limit: liquid limit						silt			*********			***************************************	san	<u>t</u>					(grave	;l 		**********		y-	
Atterberg Limit: liquid limit			1	fine	m	edium		coar	se		fine		medi	um	со	ars	e fine)	n	nediu	ım	coar	se		- Comments	٤
Iiquid limit	Atterberg	Limit :		···												Ī	classificat	ion :					_			TRIGHT
plastic limit % Non Plastic plasticity index % Not Obtainable linear shrinkage % Not Obtainable natural moisture % - natural state	liquid limi	it	%	Not C	Obtai	inable						Pre	parati	on N	letho	,										ic) Corn
plasticity index % Not Obtainable in air dried in oven dried in oven dried in other	plastic lin	nit	%	Nor	n Pla	stic	ž	nat	ural	sta	te 🗌	1			\boxtimes											ay Georg
linear shrinkage % Not Obtainable oven dried Mould size 250 mm crumbing Note: Sample did not meet Minimum Mass of	plasticity	index	%	Not C	Obtai	inable	Histo	air	drie	d		├ ──			ப_ age	\dashv										ecrinic
natural moisture % - other Curling Note: Sample did not meet Minimum Mass of	linear shri	inkage	%	Not C	Obtai	inable	nple	ove	n dr	ried	\boxtimes	Мо	uld si	ze 2 :	-	ım										
curling U Sub-Sample as per AS1289.1.1 Section 5.7 Table 1		-74-74	%		-		San	oth	er)		1	Note: Samp Sub-Sample	ole di	id n	ot m	eet i	Minimu 1.1.94	m M	lass of	hle 1	200

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full.

NATA Accredited Laboratory No. 431

Approved Signatory:

Garry K Collins Specialised Testing Manager

test results

client: PELLS SULLIVAN MEYNINK PTY LTD.

job no:

LCOVLAB4329BH

principal:

project: LABORATORY TESTING - PSM 1059.TF2

laboratory : report date :

SYDNEY

location: HORNSBY QUARRY

,

October 24, 2006

test report no.: BH 12

AS1289.3.6.1

		23/10/06
A.S SIEVE SIZE (DIAMETER)	PERCENT PASSING	i
(mm)	(%)	
150.0	100.0	
63.0	94.8	
53.0	94.8	
37.5	90.0	
26.5	86.0	
19.0	84.2	
13.2	82.5	
9.5	81.2	
6.7	79.3	
4.75	77.4	
2.36	71.6	
1.18	<i>65.1</i>	
0.600	57.3	
0.425	50.1	
0.300	40.0	
0.150	26.6	
0.075	21.2	
	A.S SIEVE SIZE (DIAMETER) (mm) 150.0 75.0 63.0 53.0 37.5 26.5 19.0 13.2 9.5 6.7 4.75 2.36 1.18 0.600 0.425 0.300 0.150	A.S SIEVE SIZE (DIAMETER) (mm) (mm) (%) 150.0 100.0 75.0 94.8 63.0 94.8 53.0 94.8 37.5 90.0 26.5 86.0 19.0 34.2 13.2 82.5 9.5 81.2 6.7 79.3 4.75 77.4 2.36 1.18 65.1 0.600 57.3 0.425 50.1 0.300 40.0 0.150 26.6

remarks: 1.Sample received from the Client on the 16/10/06

2.Sample did not meet Minimum Mass of Sub-sample requirement as per AS1289.1.1 Section 5.7 Table 1

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full.

NATA Accredited Laboratory No. 431

Approved Signatory:

Garry K Collins Specialised Testing Manager Date:

24/10/06

Alms

Unit 8, 12 Mars Road, Lane Cove West, NSW, 2066

part	icle	9 8	siz	e	d	is	tri	b	u	ti	on		&	a	tt	eı	rbe	er	g							00		(02)	9911	100.	j
client : principal : project : location :		ATO	ORY T	EST						F2								la re	b no iborat eport est re	ory date	:	:	SY Oc	DN tob	EY er 2		29B 200				
test proces sample no sample ide	:	610	0032		·		-			1,3	2.6.1								de	pth	:		-								OI II WOULD
	A	.S. s	ieve :	size							75 um	7. C.		300 um	425 um	mn 009	1.18 mm)	- 2.36 mm	7 7	4.75 mm	DE / 0	EE C.S.	EEE 7.61	mm 6.	26.5 mm	37.5 mm 53 mm	75 mm		EE 061	FORM NUMBER ELLONZ VERSION OLO
100					TIT						<u> </u>			<u> </u>											l	L			_	100	ľ
90																										/	1			90	
80																					_	_		_						80	
70																			/											70	
n size O																/	_													60	
percentage finer than size	,														/															50	
entage f O														/																40	
90 gerce																														30	
20																														20	
10								-																						10	
0.0	01				0.0)1			0.	.05	0.1						1.0						10						100	0	
	0.0	02	2					0.06				pa	article size - millimetro					2.0			************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			60	60		İ			
	clay		fine		-	ilt dium		coa	rse		fine	3	r	san nedi			coar	se		fine			ravo			coa	rse	C	obbles		9
Atterberg	Limit	:																cl	assifi	catio	n :										-
liquid limit %		%	34							Preparation Method																(0)					
plastic lim		%		20			Sample History	natural state air dried				dry sieving																	200,000		
plasticity i		% 14			□ 로 oven dried 🔀			_ ₹]	Linear Shrinkage Mould size 250 mm																						
linear shrinkage % natural moisture %					. 0 -		Sami	other				crumbing			No	Note: Sample did not meet Minimum Mass of Sub-Sample as per AS1289.1.1 Section 5.7 Table 1						continuent to come accommon the re-									

The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full.

NATA Accredited Laboratory No. 431

Garry K Collins
Specialised Testing Manager

: 8

ALS Environmental

CERTIFICATE OF ANALYSIS

COFFEY ENVIRONMENTS PTY LTD

Laboratory

ALS Environmental Sydney

Page

1 of 5

Contact : MR GARRY COLLINS Contact : Greg Vogel Work Order : ES0613359

: 8/12 MARS ROAD LANE COVE WEST NSW Address : 277-289 Woodpark Road Smithfield NSW

AUSTRALIA 2066 Australia 2164

 Telephone
 : 02 9911 1000
 Telephone
 : +61 (02) 8784 8555

 Facsimile
 : 02 9911 1001
 Facsimile
 : +61 (02) 8784 8500

Project : LCOVLAB4329BH Quote number : EN/007/06 Date received : 25 Oct 2006

 Order number
 : 5350

 C-O-C number
 : 29854

 Secured
 : 27 Oct 2006

 No. of samples
 - Received

Site : - Not provided - Analysed : 8

ALSE - Excellence in Analytical Testing

Client

Address

NATA Accredited Laboratory 825

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatory Position Department

Peter Dickenson Senior Spectroscopist Inorganics - NATA 825 (10911 - Sydney)

Page Number : 2 of 5

Client : COFFEY ENVIRONMENTS PTY LTD

Work Order : ES0613359

ALS Environmental

Comments

This report for the ALSE reference ES0613359 supersedes any previous reports with this reference. Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Analytical Results for Samples Submitted
- Surrogate Recovery Data

The analytical procedures used by ALS Environmental have been developed from established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

When moisture determination has been performed, results are reported on a dry weight basis. When a reported 'less than' result is higher than the LOR, this may be due to primary sample extracts/digestion dilution and/or insuffient sample amount for analysis. Surrogate Recovery Limits are static and based on USEPA SW846 or ALS-QWI/EN38 (in the absence of specified USEPA limits). Where LOR of reported result differ from standard LOR, this may be due to high moisture, reduced sample amount or matrix interference. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number, LOR = Limit of Reporting. * Indicates failed Surrogate Recoveries.

Page Number : 3 of 5

Client : COFFEY ENVIRONMENTS PTY LTD

Work Order : ES0613359

Analytical Results		Clie	nt Sample ID :	TP1/S1	TP3/S3	TP4/S5	TP6/S7	TP8/S9
Analytical Results	Samp	le Matrix Type	e / Description :	SOIL	SOIL	SOIL	SOIL	SOIL
		Samp	e Date / Time :	(25 Oct 2006)				
				(15:00)	(15:00)	(15:00)	(15:00)	(15:00)
		Laborate	ory Sample ID :					
Analyte	CAS number	LOR	Units	ES0613359-001	ES0613359-002	ES0613359-003	ES0613359-004	ES0613359-005
EA055: Moisture Content					•		•	
Moisture Content (dried @ 103°C)		1.0	%	<1.0	1.4	1.7	3.5	2.3
ED040T : Total Sulphate by ICPAES								
Sulphate as SO4 2-	14808-79-8	100	mg/kg	280	430	160	<100	200

Page Number : 4 of 5

Client : COFFEY ENVIRONMENTS PTY LTD

Work Order : ES0613359

Analytical Results		Clie	nt Sample ID :	TP10/S11	TP12/S12	TP14/S14		
Analytical Nesults	Sampl		e / Description : le Date / Time :	SOIL (25 Oct 2006)	SOIL (25 Oct 2006)	SOIL (25 Oct 2006)		
		•		(15:00)	(15:00)	(15:00)		
		Laborat	ory Sample ID :					
Analyte	CAS number	LOR	Units	ES0613359-006	ES0613359-007	ES0613359-008		
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	<1.0	3.5	1.1		
ED040T : Total Sulphate by ICPAES								
Sulphate as SO4 2-	14808-79-8	100	mg/kg	410	<100	<100		

Page Number : 5 of 5

Client : COFFEY ENVIRONMENTS PTY LTD

Work Order : ES0613359

ALS Environmental

Surrogate Control Limits

l No surrogates present on this report.

Report version : COANA 3.02 A Campbell Brothers Limited Company