Site 013 – Sams Creek, Mount Kuring-gai

Freshwater site Berowra Creek Catchment

Monitoring Program Timelines

Program Name (site reference)	Sampling Period	Sampling Frequency
Long-term (013)	Oct 1994 – Jun 2016	Fortnightly
	Jul 2016 – Sept 2017	Monthly
Industrial (013)	Oct 2017 ongoing	Monthly

Key Findings and Recommendations

Condition	 Phys-chem: pH is elevated and consistently exceeds REHVs. DO is slightly suppressed only complying with REHVs approximately 50% of the time. Clarity: Turbidity and TSS are low and generally compliant with REHVs. Long-term decreasing trend with particular improvement evident after 2012. Nutrients: Nutrients are elevated and consistently exceed REHVs despite a long-term decrease, particularly in TP. Bacteria: Bacteria levels are slightly elevated and exceed REHVs around 50% of the time despite a long-term decreasing trend. A reduction in data variability evident after 2008.
Issues	 Strongly influenced by industrial development in the catchment Potential impacts from wastewater infrastructure Difficulty in meeting REHVs in highly modified catchments
Recommendations	 Investigate sources of nutrients and bacteria in the catchment Identify further opportunities for WSUD in the catchment Ongoing collaboration with Sydney Water to improve the management of wastewater Collaboration with State Government agencies (i.e. EPA) to improve the management of industrial developments Engage with industry to identify opportunities to reduce sources of pollutants Review water quality values and objectives relevant to industrial sites and continue monitoring until objectives are achieved Maintain high sediment and erosion control standards

Site Photos

Sams Creek looking downstream during low flow

Sams Creek looking upstream during low flow

Results of Data Analysis

013	REHV	Long-term				2012-2017			
		n	Median	%NCs	Trend	n	Median	%NCs	Trend
Temp (°C)	NA	496	16.74	NA	NS	102	16.42	NA	NS
рН	4.8-7	494	7.23	81	\downarrow	101	7.24	90	NS
DO (%sat)	75-118	457	80.90	42	\downarrow	102	73.75	52	NS
EC (mS/cm)	0.32	495	0.30	37	NS	102	0.29	28	NS
Turbidity (NTU)	8	496	6.9	45	↓	102	3.3	21	NS
TSS (mg/L)	7	507	4	35	\downarrow	102	2	16	NS
TP (mg/L)	0.01	507	0.051	97	↓	102	0.030	100	\downarrow
TN (mg/L)	0.32	507	0.610	90	↓	102	0.460	75	NS
NH ₃ -N (mg/L)	0.02	507	0.050	74	\downarrow	102	0.040	71	\downarrow
NO _x -N (mg/L)	0.05	507	0.200	85	Ļ	102	0.140	81	NS
F.Cols (CFU/100ml)	150	507	410	69	\downarrow	102	210	56	NS

Table 1 Results of non-conformance calculations and Kendall Tau (p<0.05) trend analysis for Site 013

REHV – Regional Environmental Health Value

n - Number of sampling events

%NCs - percent non-conformance based on REHVs

NA - No associated REHV or benchmark value

 $\rm NS$ - trend not significant based on Kendall Tau analysis at p<0.05

 \uparrow - significant increasing trend based on Kendall Tau at p<0.05

 \downarrow - significant decreasing trend based on Kendall Tau at p<0.05

Median	%NCs
Within or below REHV	<25%
Equal to REHV	25% to 75%
Outside or above REHV	>75%
No associated REHV	Not Applicable

Table 2 Descriptive statistics for variables measured at Site 013 from January 1995 to September 2017

Variable	Valid n	Mean	Median	Minimum	Maximum	20 th Percentile	80 th Percentile	Std Dev
Temp (°C)	496	16.52	16.74	7.54	28.00	12.52	20.32	4.000
рН	494	7.28	7.23	4.05	11.00	7.01	7.48	0.400
DO (mg/L)	492	7.97	8.16	0.20	18.00	6.14	9.80	2.500
DO (%sat)	457	78.98	80.90	2.00	200.00	61.00	98.10	25.000
EC (mS/cm)	495	0.32	0.30	0.00	8.00	0.20	0.40	0.400
EC (µS/cm)	196	292.66	292.00	48.00	2840.00	217.00	340.00	201.300
Turbidity (NTU)	496	30.8	6.9	0.0	800.0	2.5	24.0	86.50
TSS (mg/L)	507	32	4	1	5460	1	14	257.7
TP (mg/L)	507	0.630	0.051	0.003	93.000	0.027	0.150	4.6000
TN (mg/L)	507	1.170	0.610	0.080	92.000	0.400	1.140	4.3000
NH ₃ -N (mg/L)	507	0.390	0.050	0.005	74.000	0.020	0.150	3.4000
NOx-N (mg/L)	507	0.270	0.200	0.005	2.000	0.080	0.400	0.3000
F.Cols (CFU/100ml)	507	26766	410	1	7000000	70	3600	320485.0
E.Coli (CFU/100ml)	25	537	110	1	7800	26	450	1553.8
Entero (CFU/100ml)	45	644	210	2	9000	43	600	1513.9

Boxplots showing annual variability for each variable measured

Waterway Health Review

